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Abstract This paper considers pooling several adjacent stations in a tandem network
of single-server stations with finite buffers. When stations are pooled, we assume that
the tasks at those stations are pooled but the servers are not. More specifically, each
server at the pooled station picks a job from the incoming buffer of the pooled station
and conducts all tasks required for that job at the pooled station before that job is
placed in the outgoing buffer. For such a system, we provide sufficient conditions
on the buffer capacities and service times under which pooling increases the system
throughput by means of sample-path comparisons. Our numerical results suggest that
pooling in a tandem line generally improves the system throughput—substantially in
many cases. Finally, our analytical and numerical results suggest that pooling servers
in addition to tasks results in even larger throughput when service rates are additive
and the two systems have the same total number of storage spaces.
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1 Introduction

Tandem queueing networks have long been employed as useful models in the design
and control of several manufacturing and communications systems. In this paper, we
consider such a queueing network where jobs flow through a series of multiple stations
each having a single server. Jobs waiting for service at a station queue up in the input
buffer of a station which can have limited capacity. This means that a station can
be blocked if the input buffer of the downstream station is full. For such a queueing
network, we consider pooling two or more adjacent stations into a single station with
the objective of increasing the long-run average system throughput.

More specifically,we consider a situationwhere pooling twoormore stations results
in a single station where the servers of the pooled stations work in parallel on different
jobs. Each server takes a job from the input queue and completes the entire service
of this job at the pooled station (which consists of the tasks performed at stations that
were pooled) without any collaboration with other servers before starting service of
another job. Thus, pooling is feasible if the servers at the stations to be pooled are
flexible to work at all the pooled stations. Because of the parallel working structure of
servers at the pooled station, we refer to this type of pooling as parallel pooling. Our
main goal in this paper is to study the departure process and throughput of a tandem
line in which a group of stations are parallel pooled, and to obtain insights into when
such a pooling would be beneficial.

The main work on parallel pooling (see, for example, Smith and Whitt [22], Cal-
abrese [9], Section 8.4.1 of Buzacott and Shanthikumar [8], Benjaafar [6], and Harel
[12]) considers resource sharing in unconnected Markovian queuing systems. One
conclusion is that pooling parallel queues while keeping the identities of servers is
in general beneficial in terms of throughput and congestion measures when all jobs
have the same service time distribution. For example, it is well-known that an M/M/m
queue with arrival rate mλ and service rate μ for each server yields a shorter long-run
average waiting time than m parallel M/M/1 queues, each having an arrival rate of
λ and service rate μ. However, when parallel queueing systems that serve jobs with
different service time distributions are pooled, parallel pooling may degrade the per-
formance, as shown in several studies; see, for example, Smith and Whitt [22] and
Benjaafar [6]. Tekin et al. [24] later provided conditions under which parallel pooling
of systems with different service time distributions is beneficial by using approxima-
tions. For example, they showed that if the mean service times of all jobs are similar,
then pooling systems with the highest coefficient of variation for the service times
yields the highest reduction in the average delay.

Parallel pooling in queueing networks with identical servers has been also studied
before by Buzacott [7], Van Oyen et al. [25], and Mandelbaum and Reiman [17].
Buzacott [7] compares a series system with single-server stations and arrivals at the
first station and a system of parallel stations with servers performing all tasks of the
series system. The performance measure of interest is the long-run average number of
jobs in the system. Assuming that the tasks in the series system are balanced in terms
of mean processing times and their coefficients of variation, Buzacott [7] uses multiple
approximate formulae (under heavy,medium, and light traffic) to show that the parallel
system is better than the tandem line if the jobs in the parallel system are assigned to
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each server cyclically. However, the author also shows that the opposite is true under
heavy traffic if the arriving jobs are assigned to the parallel stations randomly and the
service time variability is sufficiently low. Van Oyen et al. [25] consider both parallel
pooling and cooperative pooling (where all servers are pooled into a single team) in a
tandem network, and show that the throughput remains the same under both pooling
structures when all stations in the network are pooled. They also provide numerical
examples that support the claim that parallel pooling of all stations in a tandem line
is an effective policy if the goal is to minimize the mean sojourn time. Finally, under
the assumptions of light or heavy traffic, Mandelbaum and Reiman [17] compare
parallel and cooperative pooling structures when all stations in a queueing network
are pooled. They point out that parallel pooling is always worse than cooperative
pooling in terms of the mean sojourn time of each job in the system, even if their
steady-state throughputs are the same. Mandelbaum and Reiman [17] also conclude
that the difference between the mean steady-state sojourn times of these two pooled
systems is maximal in light traffic, and it diminishes as the traffic becomes heavy.

Note that in all prior work on parallel pooling in queueing networks, it is assumed
that all servers are identical and all stations in the network are pooled. Moreover,
Buzacott [7] and Mandelbaum and Reiman [17] assume that the buffers in the orig-
inal system are infinite. In this study, we relax these three assumptions and identify
sufficient conditions under which parallel pooling of a subset of stations in a tandem
line with finite-capacity queues and possibly nonidentical servers will improve the
departure process.

Finally, we should note that there is a substantial literature on cooperative pooling
in queueing networks. We here mention some of the most relevant work in the area
and refer the interested reader to Andradóttir et al. [3] and references therein. Most of
the literature on cooperative pooling focuses on dynamic assignment of servers, i.e.,
situations where servers are not permanently pooled but rather can be dynamically
assigned to stations where they can cooperate on the same job, as in Andradóttir
et al. [3]. On the other hand, there are a few articles where the decision is about
permanently pooling servers into a team. This includes Buzacott [7], Mandelbaum
and Reiman [17], and Van Oyen et al. [25], which we mentioned earlier, and Argon
and Andradóttir [4]. Argon and Andradóttir [4] consider cooperative pooling of a
subset of adjacent stations in a tandem line and study the benefits of such a pooling on
the departure process, throughput, work-in-process inventory, and holding costs. The
main finding is that pooling a subset of stations in general yields a better outcome,
especially when the bottleneck station is pooled, but one needs to be careful about the
size and allocation of buffers in the pooled system to realize such a benefit.

It is no surprise that cooperative pooling has been studied more extensively than
parallel pooling, as it is generally much easier to analyze models with a single server.
However, parallel pooling is a more easily justified pooling mechanism in many appli-
cations. For example, in several service systems, such as call centers, pooling many
servers into one is undesirable if not impossible. On the other hand, parallel pooling
requires that there are enough tools, equipment, and space that multiple jobs can be
processed at the same time. Some applications that would satisfy this requirement
are office/desk jobs such as code developing and architectural design, service sys-
tems such as call centers, and manufacturing processes requiring inexpensive tools
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and equipment such as textile manufacturing. In these applications, instead of each
task being done by a different worker, under parallel pooling multiple tasks of each
project/job will be “owned” by a single worker who has access to ample equipment
such as computers, phone lines, and sewing machines. For applications where both
types of pooling are allowable, it is interesting to compare the effects of these two pool-
ing structures on different performance measures. In this paper, we will use analytical
and numerical results to provide insights into this comparison in a tandem line.

The outline of this paper is as follows. In Sect. 2, we analyze the effects of parallel
pooling on the departure time of each job from each station in a tandem network and
on the steady-state throughput of the system. In Sect. 3, we study the effects of paral-
lel pooling on other performance measures (besides departure times and throughput),
namely, the work-in-process inventory, sojourn times, and holding costs. In Sect. 4,
we provide a brief comparison of lines with parallel servers and cooperative servers.
In Sect. 5, we use numerical results to quantify the potential benefits of parallel pool-
ing and to obtain a better understanding of when pooling with parallel servers will
be beneficial in tandem lines with finite buffers. Finally, in Sect. 6, we provide our
concluding remarks and discuss some insights that can be drawn from this study. The
Appendix provides proofs of our analytical results.

2 Problem formulation and main results

Consider a queueing network of N ≥ 2 stations in tandem numbered 1, . . . , N , where
each station j ∈ {1, . . . , N } has a single server (referred to as server j) and jobs are
served in the order that they arrive (i.e., according to the first-come-first-served, FCFS,
queueing discipline). We assume that there are 0 ≤ b j ≤ ∞ buffers in front of station
j ∈ {2, . . . , N }, an unlimited supply of jobs in front of the first station (b1 = ∞), and
an infinite capacity buffer space following the last station (bN+1 = ∞). Consequently,
if all buffers in front of station j ∈ {2, . . . , N } are full when station j − 1 completes
a job, then we assume that this job remains at station j − 1 until one job at station j
is moved to station j + 1 or leaves the system (if j = N ). This type of blocking is
usually called production blocking. Because we assume that the output buffer space
for station N is unlimited, station N will never be blocked.

In the system under consideration, there are at least two adjacent stations whose
servers are flexible such that they can work at both of these stations. We let μ�, j ≥ 0
denote the rate at which server � processes jobs at station j , for �, j ∈ {1, . . . , N }.
Without loss of generality, we assume that μ j, j > 0 for all j ∈ {1, . . . , N }. The
servers are said to be identical if μ�, j = μk, j for all j, k, � ∈ {1, . . . , N }. We also let
X j (i) be the service time of job i ≥ 1 at station j ∈ {1, . . . , N }. We call μ j, j X j (i)
the service requirement of job i ≥ 1 at station j ∈ {1, . . . , N }.

Now, consider an alternative tandem line, where stations K , . . . , M , for K ∈
{1, . . . , N − 1} and M ∈ {K + 1, . . . , N }, are pooled to obtain a single station at
which servers K , . . . , M work in parallel. Jobs form a single queue in front of this
pooled station and are allocated from this queue to a server only when the server would
otherwise be idle. We let P [K ,M] and Q[K ,M] denote the number of buffers before and
after the pooled station, respectively, and assume that the buffer sizes before stations

123



Queueing Syst

2, . . . , K − 1 and M + 2, . . . , N are kept intact after pooling. We also assume that
jobs are served according to the FCFS queueing discipline. Finally, we assume that
the blocked jobs at the pooled station are released to station M + 1 in the order that
they became blocked. Hence, the i th service completion and the i th departure from
the pooled station are realized by the same job, for i ≥ 1. In the remainder of this
section, we provide sufficient conditions under which such a pooling structure will
improve the departure process and throughput of the tandem line under consideration.

Let X [K ,M]
� (i) be the service time of the i th entering job at the pooled station, for

i ≥ 1, when server � ∈ {K , . . . , M}works on that job. (If it is not known which server
is working on the i th entering job at the pooled station, then we suppress the subscript
� in X [K ,M]

� (i).) Although we do not assume it in general, in some results we use the
following reasonable model for the service times at the pooled station, which is stated
as Assumption 1.

Assumption 1 Assuming that μ�, j > 0 for all �, j ∈ {K , . . . , M}, the service time
of job i ≥ 1 at the pooled station served by server � ∈ {K , . . . , M} is given by

X [K ,M]
� (i) =

M∑

j=K

μ j, j

μ�, j
X j (i). (1)

In Assumption 1, μ j, j X j (i) represents the service requirement for job i at station
j . Hence, when it is divided by μ�, j , it gives the service time for job i at station j
when processed by server �. Such a scaling of service times for different servers is
commonly used in models of flow lines with cross-trained servers; see, for example,
[1,5,15].

We let X [K ,M]
j (i) denote the service time of the i th entering job at station j , in the

pooled system for j ∈ {1, . . . , K −1, M+1, . . . , N } and i ≥ 1.We also let D[K ,M]
j (i)

be the time of the i th departure from station j ∈ {1, . . . , K −1, M, . . . , N }, for i ≥ 1,
in the pooled system (we arbitrarily refer to the pooled station as station M). Similarly,
we let Dj (i) denote the time of the i th departure from station j in the original line,
where j ∈ {1, . . . , N } and i ≥ 1. Finally, in order to provide recursive expressions for
the departure times from the pooled station, for j = 1, . . . , n and n ≥ 1, we define
�

(n)
j {a1, a2, . . . , an} to be a function fromR

n toR that returns the j th largest element in

the sequence {a1, a2, . . . , an} so that �
(n)
1 {a1, a2, . . . , an} ≥ �

(n)
2 {a1, a2, . . . , an} ≥

· · · ≥ �
(n)
n {a1, a2, . . . , an}.

We next give recursive formulae that the departure times D[K ,M]
j (i) must satisfy

under the initial condition that all buffers are empty and all servers are idle. For con-
venience, we assume that D[K ,M]

j (i) = 0 for i ≤ 0 or j /∈ {1, . . . , K −1, M, . . . , N }.
Since there is a single server at stations that are not pooled, for j ∈ {1, . . . , K −
2, M + 1, . . . , N } and i ≥ 1 we have

D[K ,M]
j (i) = max

{
D[K ,M]

j−1 (i) + X [K ,M]
j (i) , D[K ,M]

j (i − 1) + X [K ,M]
j (i) ,

D[K ,M]
j+1

(
i − b j+1 − 1

)}
. (2)
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(Similar dynamic recursions for tandem lines with finite buffers are used by many
others such as Argon and Andradóttir [4], Shanthikumar and Yao [21], and references
therein.) Moreover, since the pooled station has P [K ,M] + M − K + 1 storage spaces,
including the input buffer and the servers, we have

D[K ,M]
K−1 (i) = max

{
D[K ,M]

K−2 (i) + X [K ,M]
K−1 (i) , D[K ,M]

K−1 (i − 1) + X [K ,M]
K−1 (i) ,

D[K ,M]
M

(
i − P [K ,M] − M + K − 1

) }
. (3)

We next derive a recursive formula for the departure times from the pooled station.
For this purpose, we first obtain an expression for the i th service completion time at
the pooled station. When the (i − 1)th departure from the pooled station takes place,
then one of the servers can start serving the (i + M − K )th job that enters the pooled
station, for i ≥ 1. Hence, the service completion time of the (i + M − K )th job that
enters the pooled station is given by

max
{
D[K ,M]

K−1 (i + M − K ), D[K ,M]
M (i − 1)

}
+ X [K ,M](i + M − K ), (4)

for all i ≥ 1. On the other hand, note that the i th service completion at the pooled
station is realized either by the (i + M − K )th job that enters the pooled station or by
the jobs that enter the pooled station before the (i + M − K )th job, but have not yet
completed their service requirements at the pooled station at the time of the (i − 1)th
service completion at the pooled station. For j = 1, . . . , M − K , let A j (1) denote
the j th largest service completion time at the pooled station among the first M − K
jobs that entered the pooled station and let A j (i), for i ≥ 2, denote the j th largest
service completion time at the pooled station among those M − K jobs that entered
the pooled station before the (i + M − K )th entering job and have not yet left the
pooled station at the time of the (i−1)th departure from the pooled station. Hence, the
i th service completion from the pooled station is equal to the minimum of AM−K (i)
and the service completion time of the (i + M − K )th job entering the pooled station.
Then, using Eq. (4) and the fact that the i th departure from the pooled station may
take place only after departure i − Q[K ,M] − 1 from station M + 1 takes place, gives

D[K ,M]
M (i) = max

{
min

{
max

{
D[K ,M]

K−1 (i + M − K ), D[K ,M]
M (i − 1)

}

+X [K ,M](i + M − K ), AM−K (i)
}
, D[K ,M]

M+1

(
i − Q[K ,M] − 1

) }
. (5)

Moreover, for all j = 1, . . . , M−K and i ≥ 1,we have A j (1) = �
(M−K )
j {D[K ,M]

K−1 (m)

+ X [K ,M](m) : m = 1, . . . , M − K } and

A j (i + 1) = �
(M−K+1)
j

{
max

{
D[K ,M]

K−1 (i + M − K ), D[K ,M]
M (i − 1)

}

+X [K ,M](i + M − K ), A1(i), . . . , AM−K (i)
}
. (6)
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Similar recursive formulae for a tandem line with two stations and no buffers in which
the first station has a single server and the last station has multiple servers are given
in Yamazaki et al. [26]. However, we are not aware of any other work that provides
expressions for departure times in a tandem line with parallel servers at a station in
this generality.

We use these recursive expressions to prove Proposition 1, which provides a set of
conditions on the service times andbuffers in the pooled systemsuch that the departures
from the pooled system are no later than those from the original (unpooled) line in the
sense of sample paths.

Proposition 1 For 1 ≤ K ≤ M ≤ N, if

(i) X [K ,M]
j (i) ≤ X j (i) for all j ∈ {1, . . . , K − 1, M + 1, . . . , N } and i ≥ 1;

(ii) X [K ,M](i) ≤∑M
k=K Xk(i) for all i ≥ 1; and

(iii) bk = 0 for k ∈ {K + 1, . . . , M}, P [K ,M] ≥ bK , and Q[K ,M] ≥ bM+1;

then we have that D[K ,M]
j (i) ≤ Dj (i) for j ∈ {1, . . . , K − 1, M, . . . , N } and i ≥ 1.

Proposition 1 implies that parallel pooling will result in smaller departure times
from the system if (i) service times at stations that are not pooled do not increase by
pooling; (i i) the pooled service time of a job at the pooled station is no larger than the
total service time of that job at stations K , . . . , M in the original system, irrespective of
which server processes the job at the pooled station; (i i i) there are zero buffers between
the pooled stations in the original system and the buffers around the pooled station in
the pooled system are no smaller than the corresponding buffers in the original line.
Defining the throughput of the pooled system by T [K ,M] = lim inf i→∞{i/D[K ,M]

N (i)}
and that of the original system by T = lim inf i→∞{i/DN (i)}, Proposition 1 implies
that T [K ,M] ≥ T if conditions (i), (i i), and (i i i) are satisfied and the limits exist.
(For conditions that guarantee that these limits exist almost surely, see, for example,
Proposition 4.8.2 in Glasserman and Yao [10].)

Conditions (i) and (i i) of Proposition 1 are reasonable because they require pooling
not to increase service times at each station. Also, under Assumption 1, condition (i i)
will hold if μ j, j ≤ μ�, j for all j, � ∈ {K , . . . , M}, i.e., if either the servers are
identical or the assignment of servers to stations in the original system was poorly
done. One would also expect that the result of Proposition 1 may not hold unless the
buffers around the pooled station is at least as large as the corresponding buffers in
the original line. However, it is harder to justify the condition that the buffers between
the pooled stations are zero for pooling to be beneficial. We next provide an example
that demonstrates that if this condition does not hold, then the result may fail.

Example 1 Suppose that we pool both stations in a tandem line with two stations
and b2 ≥ 1. Suppose also that the service times at the pooled station are given by
X [1,2]

� (i) = X1(i) + X2(i) for � = 1, 2 and i ≥ 1. Thus, this example satisfies
all conditions of Proposition 1 except for the condition that bk = 0 for k ∈ {K +
1, . . . , M}. Now, consider a sample path under which the service times for the first
four jobs that enter the original system are given by (X1(1), X1(2), X1(3), X1(4)) =
(1, 5, 10, 5) and (X2(1), X2(2), X2(3), X2(4)) = (10, 5, 10, 15) minutes. Then, we
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obtain that D2(3) = 26 minutes and D[1,2]
2 (3) = 30 minutes, i.e., the timing of the

third departure from the system is delayed by pooling.

Although the above example demonstrates that the condition that there are zero
buffers between the pooled stations in the original system is needed for the result to
hold in the sample-path sense, it is not necessarily needed to achieve improvements by
pooling in some weaker sense (such as in terms of the long-run average throughput).
Indeed, in our numerical experiments presented in Sect. 5, we observe that parallel
pooling improves system throughput in most scenarios including those with positive
buffers between the pooled stations.

We next provide two results that guarantee an improvement by pooling in a weaker
sense than the sample-path sense considered in Proposition 1. We first define the usual
stochastic order between two (discrete-time) stochastic processes. Let Y = {Y(i)}i≥1
and Z = {Z(i)}i≥1 be stochastic processes with state space Rd , where d ∈ N. Then,
Y is smaller than Z in the usual stochastic ordering sense (Y ≤st Z) if and only if
E[ f (Y)] ≤ E[ f (Z)] for every non-decreasing functional f : R∞ → R provided the
expectations exist. (A functional f : R∞ → R is non-decreasing if f ({y1, y2, . . .}) ≤
f ({z1, z2, . . .}) whenever yi ≤ zi for all i ≥ 1. A functional φ :R∞ →R

∞ is non-
decreasing if every component of φ is non-decreasing.) For more information on the
usual stochastic order for stochastic processes, see, for example, Section 6.B.7 in
Shaked and Shanthikumar [20].

To simplify our notation, for any vectorZ(i) = (Z1(i), . . . , Zn(i)), where i, n ≥ 1,
we define a sub-vector Zk,�(i) = (Zk(i), . . . , Z�(i)) for 1 ≤ k ≤ � ≤ n. We also
define

D(i) = (D1(i), . . . , DK−1(i), DM (i), DM+1(i), . . . , DN (i)),

X(i) = (X1(i), . . . , XN (i)),

D[K ,M](i) = (D[K ,M]
1 (i), . . . , D[K ,M]

K−1 (i), D[K ,M]
M (i), D[K ,M]

M+1 (i), . . . , D[K ,M]
N (i)), and

X[K ,M](i) = (X [K ,M]
1 (i), . . . , X [K ,M]

K−1 (i), X [K ,M](i), X [K ,M]
M+1 (i), . . . , X [K ,M]

N (i)), for all i ≥ 1.

Proposition 2 For 1 ≤ K ≤ M ≤ N, if condition (i i i) of Proposition 1 holds and

{
X[K ,M](i)

}

i≥1
≤st

{
X1,K−1(i),

M∑

k=K

Xk(i),XM+1,N (i)

}

i≥1

, (7)

then we have that
{
D[K ,M](i)

}
i≥1 ≤st {D(i)}i≥1.

Proposition 2 replaces the conditions on service times of Proposition 1 (in partic-
ular conditions (i) and (i i)) by the weaker condition (7) at the cost of obtaining an
improvement in departure times in the sense of usual stochastic orders. As a stochas-
tic improvement in departure times implies an improvement in the long-run average
throughput, the weaker conditions of Proposition 2 are sufficient to guarantee an
increase in system throughput by parallel pooling. Note that (7) holds as a stochastic
equality when the servers are identical and pooling does not affect task completion
times; hence Proposition 2 guarantees improved throughput as long as condition (i i i)
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of Proposition 1 also holds. We next provide another set of conditions under which
parallel pooling of all stations in a tandem line increases the system throughput. We
first state one of the main assumptions of this result.

Assumption 2 For �, j ∈ {K , . . . , M}, the service rates satisfy the following product
form:

μ�, j = θ�η j ,

where θ� ∈ [0,∞) and η j ∈ [0,∞) are constants that depend only on server � and
station j , respectively.

Assumption 2means that the rate of a serverworking on a job at a station is separable
into two components: a component θ� that quantifies the speed of server � and another
component η j that quantifies the intrinsic difficulty of the task at station j . Hence, this
assumption implies that a “fast” server is fast at every station and a “difficult” task is
difficult for all servers. In particular, a larger θ� represents a faster server, whereas a
larger η j represents an easier task. Note that Assumption 2 generalizes the assumption
that the service rates depend only on the servers or on the tasks. Several earlier works
on queueing systems with flexible servers employed this assumption or special cases
thereof; see, for example, [2,5].

Proposition 3 Suppose that {X(i)}i≥1 is a sequence of independent and identically
distributed (i.i.d.) random vectors with E[X j (i)] < ∞ for all j ∈ {1, . . . , N } and
i ≥ 1. Then, we have T ≤ T [1,N ] under Assumptions 1 and 2.

Proposition 3 states that complete pooling (i.e., pooling all stations in a line)
increases the throughput under reasonable conditions on the service times and server
capabilities. A result similar to Proposition 3 is proved by Buzacott [7] but under the
assumption of identical servers and infinite buffers, and later by Van Oyen et al. [25]
for identical servers. Proposition 3 also leads to a useful corollary that provides a
set of conditions under which partial pooling (i.e., pooling only a subset of stations)
increases the system throughput.

Corollary 1 Suppose that {X(i)}i≥1 is a sequence of i.i.d. random vectors with
E[X j (i)] < ∞ for all j ∈ {1, . . . , N } and i ≥ 1. Then, we have T ≤ T [K ,M]
for 1 ≤ K ≤ M ≤ N if Assumptions 1 and 2 hold, pooling does not affect the dis-
tribution of service times at stations that are not pooled, and there are infinite buffers
before and after the pooled station.

Corollary1 shows that under reasonable conditions on service times and server rates,
pooling a subset of neighboring stations in a tandem line will result in an improvement
in system throughput when the buffer spaces around the pooled station are unlimited.
Similarly to Propositions 1 and 2, Corollary 1 requires the buffers before and after
the pooled station to be large, but unlike those propositions, it does not require the
buffers between the stations to be pooled to be zero (at the expense of a weaker result
about ordering of throughput rather than departure times). Our next result shows that
complete pooling is always better than any form of partial pooling under the same
mild conditions on service times and server rates.
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Proposition 4 Suppose that {X(i)}i≥1 is a sequence of i.i.d. random vectors with
E[X j (i)] < ∞ for all j ∈ {1, . . . , N } and i ≥ 1. Then, we have T [1,N ] ≥ T [K ,M]
for 1 ≤ K ≤ M ≤ N if Assumptions 1 and 2 hold and pooling does not affect the
distribution of service times at stations that are not pooled.

Finally,we consider a tandem linewithb j = ∞ for all j = 2, . . . , N to demonstrate
how much improvement in throughput can be gained by parallel pooling.

Proposition 5 Suppose that b j = ∞ for all j ∈ {2, . . . , N } and {X(i)}i≥1 is a
sequence of i.i.d. random vectors with E[X j (i)] < ∞ for all j ∈ {1, . . . , N } and
i ≥ 1. Let J ∈ {1, . . . , N } be a bottleneck station, i.e., E[X J (1)] ≥ E[X j (1)] for all
j = 1, . . . , N. Under Assumption 1, pooling station J with its neighboring stations
could lead to an increase in the system throughput by a factor of the number of stations
that are pooled if the servers at the pooled station are identical and pooling does not
affect the distribution of service times at stations that are not pooled.

3 Other performance measures

In this section, we study the effects of parallel pooling on the total number of jobs in
the system (commonly known as the work-in-process inventory [WIP] in the manu-
facturing literature), sojourn times, and holding costs. For a fair comparison between
the pooled and original systems in terms of these performance measures, in this sec-
tion we consider the case where the total number of jobs that enter the original and
pooled systems are equal at any given time. In order to guarantee this, we replace the
assumption of an infinite supply of jobs with the assumption that there is an exogenous
arrival stream at the first station, which is also independent of the service times. Recall
that we assume that the size of the input buffer of the first station b1 is infinite, and
hence, arrivals to the system are never blocked. We start by noting that our analytical
results from Sect. 2 continue to hold for systems with an arrival stream.

Oneway tomodel the arrival process to the first station is to consider the tandem line
with an infinite supply of jobs but with a dummy station at the front of the line (called
station 0), where the service times are equal to the interarrival times between two
consecutive jobs and the output buffer has infinite capacity. For all 1 ≤ K ≤ M ≤ N ,
let X0(i) and X

[K ,M]
0 (i) be the times between the (i−1)st and i th arrivals at the original

and pooled lines, respectively.We then immediately obtain that Proposition 1 still holds
under the assumption of an arrival stream at the first station if X [K ,M]

0 (i) ≤ X0(i) for
all i ≥ 1. Similarly, Proposition 2 can be extended to the case with arrivals under
the condition that {X [K ,M]

0 (i)}i≥1 ≤st {X0(i)}i≥1 and the assumption that the arrival
process is independent of the service time process in both systems. Finally, if the
interarrival times are i.i.d. with finite mean and b1 = ∞, Propositions 3, 4, and 5, and
Corollary 1 can be shown to hold under the assumption of stochastic arrivals to the
first station by a minor modification of their proofs to incorporate the arrival process
as a dummy station.

When parallel pooling (stochastically) decreases the departure times from the sys-
tem with arrivals, then it is easy to show that the total number of jobs in the system
(WIP) at any given time (stochastically) decreases, too. However, even when parallel
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pooling decreases the time between the i th departure from the system and the i th
arrival to the system for all i ≥ 1, it does not always decrease the sojourn time of each
job in the system. Since the pooled station hasmultiple servers, the order the jobs leave
from the pooled station (and all the stations downstream) may be different from the
order that they enter the pooled station (and all the stations upstream). Hence, as we
demonstrate in Example 2 in the Appendix, although the i th departure time from the
system is reduced by pooling for all i ≥ 1, the sojourn time of the i th entering job may
actually increase for some i ≥ 1. Nevertheless, when parallel pooling decreases the
total number of jobs in the system (WIP) at any given time, then Little’s Law imme-
diately yields that parallel pooling decreases the long-run average sojourn time (if the
long-run average sojourn time and number in the system exist; see, for example, page
290 in Kulkarni [16]). Hence, we conclude that whenever parallel pooling decreases
the departure times from the system with an arrival stream and hence the total number
of jobs at any given time (almost surely or stochastically), then it also decreases the
long-run average sojourn time in the system (if it exists).

Finally, we provide a set of conditions under which parallel pooling decreases the
total holding costs. Let h j ≥ 0 be the holding cost per unit time of a job at station
j and at its input buffer for j = 1, . . . , N in the original line (with arrivals). We
assume that when stations K , . . . , M are parallel pooled, then the holding cost rates
h1, . . . , hK−1, hM+1, . . . , hN at the unpooled stations do not change andwe let h[K ,M]
denote the holding cost rate at the pooled station. Let H(t) and H [K ,M](t) be the total
holding costs accumulated during [0, t] for the original and parallel pooled systems,
respectively. (Formal definitions of H(t) and H [K ,M](t) are given in the proof of
Proposition 6 in the Appendix.)

Proposition 6 When there is a stochastic arrival stream to station 1, we have
H [K ,M](t) ≤ H(t), for t ≥ 0 and 1 ≤ K ≤ M ≤ N, if

(i) D[K ,M]
N (i) ≤ DN (i) for all i ≥ 1 such that DN (i) ≤ t;

(ii) if K ≥ 2, then either
(a) h j = hK for all j = 1, . . . , K − 1, or

(b) Dj (i) = D[K ,M]
j (i) for all j = 1, . . . , K − 1 and i ≥ 1;

(iii) h j ≥ hK for j = K + 1, . . . , M;
(iv) h j = hK for j = M + 1, . . . , N if M ≤ N − 1;
(v) h[K ,M] ≤ hK .

Proposition 6 shows that pooling several stations in the line will lower the total
holding costs if it lowers the departure times from the system (as in Proposition 1), the
holding cost rate at each station that is pooled is greater than or equal to the holding cost
of the first pooled station, and the holding cost rates at all the other (unpooled) stations
are equal to that of the first pooled station. Note that condition (i i)(b) in Proposition 6
holds when P [K ,M] = bK = ∞, and pooling does not change service times at stations
1, . . . , K −1. Also, Proposition 6 implies that complete pooling always decreases the
total holding cost as long as it reduces the departure times from the system and the
first station is the cheapest place to store jobs.
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4 Teams versus parallel servers

In Sects. 2 and 3, we studied pooling stations when only stations are pooled, not
their servers. In an earlier work [4], we studied “cooperative” pooling, where not only
stations are pooled but their servers are pooled as well to form a single team that
processes jobs at the pooled station. A natural question is then if one has the option
of cooperative pooling or parallel pooling, which would be better? In this section, we
will provide some analysis to answer this question.

Let T (K ,M) represent the steady-state throughput of the line discussed in Sect. 2
where stations K through M are pooled but under cooperative pooling. We first state
an assumption on the cooperation of servers when they are pooled.

Assumption 3 The service time of job i ≥ 1 at the pooled station under cooperative
pooling is given by

X (K ,M)(i) =
M∑

j=K

μ j, j X j (i)∑M
�=K μ�, j

,

for 1 ≤ K ≤ M ≤ N .

Assumption 3 states that the service rates are additive, or equivalently servers neither
lose nor gain any efficiency by cooperative pooling. This assumption has been used
frequently in the literature on flexible servers (see, for example, [1] and [17]) and is a
reasonable assumption when the number of servers to be pooled is small.

Proposition 7 If Assumptions 1, 2, and 3 hold, and {∑N
j=1 θ j X j (i)}i≥1 is a sequence

of i.i.d. random variables with finite mean, then we have T (1,N ) = T [1,N ].

Proposition 7 implies that pooling all stations in a line with i.i.d. service times at all
stations yields the same system throughput under the parallel and cooperative pooling
structures given by Assumptions 1 and 3, respectively, if the service rates satisfy the
product form of Assumption 2. (A result similar to Proposition 7 is also proved by Van
Oyen, Gel, and Hopp [25], but under the assumption of identical servers.) Proposition
7 leads to Corollary 2, which extends the result to the partial pooling case when the
input and output buffers of the pooled stations are infinite.

Corollary 2 Suppose that {(X1,K−1(i),
∑N

j=1 θ j X j (i),XM+1,N (i))}i≥1 is a sequence
of i.i.d. random vectors with E[X j (i)] < ∞ for all j = 1, . . . , N and i ≥ 1. Then,
we have T (K ,M) = T [K ,M] if Assumptions 1, 2, and 3 hold, pooling does not affect
the distribution of service times at stations that are not pooled, and there are infinite
buffers before and after the pooled station under both the parallel and cooperative
pooling structures.

The main insight that we obtain from Proposition 7 and Corollary 2 is that if the
buffer sizes around the pooled station are not limited, then it does not matter whether
one chooses parallel or cooperative pooling. The intuition is that if pooling does not
impact the departure times at the stations that are upstream from the pooled station
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(because the upstream service times are unaffected and P [K ,M] is infinite) and if the
servers at the pooled station never have to idle due to blocking (because Q[K ,M] is
infinite), then the departure rate from the pooled station would be the same (under
Assumptions 1, 2, and 3) whether it is obtained by parallel pooling or cooperative
pooling. However, when the pooled station can be blocked or can block other stations,
then it does matter whether it is obtained by cooperative or parallel pooling, as we
see in the remainder of this section. Note that in parallel pooled stations, a blocked
server cannot help another server at the same station but under cooperative pooling all
pooled servers will work together as a team until the entire station is blocked.

Consider nowa tandem line of two stationswith an infinite supply of jobs and a finite
buffer between the two stations. Suppose that jobs at each station have i.i.d. service
times that come from an exponential distribution with mean one and that there are
Li ≥ 2 identical servers at station i with μi being the rate of a single server at station
i , for i = 1, 2. We will consider this system under four configurations. In System 0,
none of the servers are pooled, which means that all Li servers are working in parallel
at station i ∈ {1, 2}. In System i ∈ {1, 2}, servers at station i work cooperatively
with additive service rates (i.e., there is a single server at station i with rate Liμi ),
whereas servers at station 3− i work in parallel. Finally, in System 3, servers at each
station work cooperatively with additive service rates, i.e., the system is a tandem line
with a single server at station i ∈ {1, 2} working at a rate of Liμi . Note that the level
of cooperation increases from System 0 to Systems 1 and 2, and then further from
Systems 1 and 2 to System 3.

It is well-known that buffer capacities affect throughput. In particular, increasing
the buffer sizes would increase the system throughput in most tandem networks (see,
for example, Glasserman and Yao [11]). In that respect, when we compare two lines
with cooperative servers and parallel servers, with everything else in the networks
being the same, the system with parallel servers has an advantage. This is because
each individual server also acts as a storage space, and hence if the buffers between
two stations have the same size, then the system with parallel servers will have a
larger number of storage spaces than the system with cooperative servers. Therefore,
when we compare Systems 0, 1, 2, and 3, we allow them to have different buffer sizes
between the two stations, and thus allow the buffer size to be another design parameter
in their comparison. For System j ∈ {0, 1, 2, 3}, let Bj , where 0 ≤ Bj < ∞, be the
number of buffers between stations 1 and 2 and let Tj be the steady-state throughput.

It is easy to see that the four systems under consideration can be modeled as birth–
death processes with different birth and death rates. We can then compare them in
terms of their steady-state system throughput as stated in the following proposition.

Proposition 8 For fixed j ∈ {1, 2}, we have
(i) T0 < Tj if B j ≥ B0 + L j − 1 and Tj < T0 if B j ≤ B0;
(ii) Tj < T3 if B3 ≥ Bj + L3− j − 1 and T3 < Tj if B3 ≤ Bj .

Proposition 8 implies that if the number of buffers in the pooled system is sufficiently
large, then higher levels of cooperation yield strictly better throughput. For example,
suppose that the Bj are chosen for j ∈ {1, 2, 3} such that all four system configurations
have the same total physical space as in System 0, i.e., L1 + L2 + B0 physical spaces,
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by letting Bj = B0 + L j − 1 for j ∈ {1, 2}, and B3 = B0 + L1 + L2 − 2. In this
case, by Proposition 8, System 0 provides the smallest and System 3 provides the
largest throughput, whereas Systems 1 and 2 yield performance in between Systems
0 and 3. This shows that having cooperative servers yields a larger throughput than
having parallel servers when the two systems are equal in terms of the total amount
of physical space. Note that at a station with cooperative servers, all servers can work
until no job can be processed at that station due to blocking or idling. However, for a
similar situation at a system with parallel servers, it is possible that some servers at
a station work while other servers at the same station stay idle. This improvement by
cooperative servers in tandem lines with finite buffers is in contrast with the results
on tandem lines with infinite buffers (such as Corollary 2), where having parallel or
cooperative servers (with the same total service capacity) does not affect the steady-
state throughput. On the other hand, Proposition 8 also implies that if the Bj for
j ∈ {1, 2, 3} are all set to B0 (i.e., the number of buffers in System 0), then System 3
provides the smallest and System 0 provides the largest throughput, whereas Systems
1 and 2 again provide performance in between Systems 0 and 3. This means that the
advantage of cooperative servers may no longer hold if the systems are not equal in
terms of total physical spaces. More specifically, if additional buffers cannot be added
to the system with cooperative pooling, then the system with parallel servers will be
more beneficial because of the extra storage space that each server provides.

5 Numerical results

With the objective of quantifying the possible improvements obtained by parallel
pooling and gaining better insights about when and how this approach should be used,
we have conducted a number of numerical experiments. In particular, we have studied
the effects of parallel pooling on the steady-state throughput and WIP of tandem lines
with three and four stations.

Recall that in Sect. 2, we obtained a set of conditions under which parallel pooling
improves the departure process; see Propositions 1 and 2. One of these conditions was
that the service time of each job at each station in the pooled system should not be larger
than the corresponding service time in the original system, and another condition was
that there should be zero buffers between the stations that are pooled. In this section,
one of our main goals is to provide evidence suggesting that parallel pooling can still
improve system throughput when there are buffers between the pooled stations (as
long as these buffers are allocated properly) and when pooling causes longer service
times at the pooled stations, for example, because servers may need additional time
to switch between different tasks. Numerical results in this section will also provide
insights into the magnitude of gain obtained by parallel pooling and its comparison
with that under cooperative pooling.

Throughout this section, we assume that all servers are identical, service times at
station j ∈ {1, . . . , N } are exponentially distributed with rate γ j ≥ 0, and service
times are independent across jobs and stations. We also assume that there is an infinite
supply of jobs in front of the first station (we focus on this case, rather than outside
arrivals, because the main performance measure of interest in this paper is the steady-
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Table 1 Throughput (THP) and WIP of balanced lines with N ∈ {3, 4} and b j = 0, for j = 2, . . . , N ,
after parallel pooling

System THP % Inc. in THP WIP % Inc. in WIP % Dec. in WIP β

N = 3

1-2-3 0.5641 – 2.3590 – – –

(12)-3 0.7290 29.23 2.7290 15.68 – 1.51

1-(23) 0.7290 29.23 2.4580 4.20 – 1.51

(123) 1.0000 77.27 3.0000 27.17 – 1.77

N = 4

1-2-3-4 0.5148 – 3.0646 – – –

(12)-3-4 0.5990 16.36 3.4562 12.78 – 1.48

1-(23)-4 0.6268 21.76 3.2700 6.70 – 1.47

1-2-(34) 0.6080 18.10 2.9690 – 3.12 1.53

(123)-4 0.7570 47.05 3.7570 22.59 – 1.77

1-(234) 0.7570 47.05 3.2709 6.73 – 1.77

(1234) 1.0000 94.25 4.0000 30.52 – 1.94

state throughput). When stations K through M are pooled, we assume that the service
time of a job at the pooled station is equal to the sum of M−K +1 exponential random
variables with means βγ −1

j , for j = K , . . . , M and some scaling factor β ≥ 1. With
the introduction of the scaling parameter β in our numerical study, we can observe
how much of an increase in service times by pooling is tolerable for pooling to be still
beneficial in terms of enhancing the throughput. Note that β > 1 corresponds to the
case where the service times at the pooled station increase by pooling, whereas β = 1
represents the case where they do not change.

We first consider balanced lines (where the service requirements are i.i.d. at all
stations before pooling, and hence there is no bottleneck station that is slower than the
other stations) with γ j = 1.0 for j ∈ {1, . . . , N } and N ∈ {3, 4}; see Tables 1 and 2.
To specify different system configurations, we use hyphens to separate the stations,
put the pooled stations between parentheses, and denote each buffer space with a small
letter “b”. For example, when N = 4 and b2 = b3 = b4 = 3, then 1-bbb2-bbb3-bbb4
denotes the original system and 1-bbbb(23)-bbbbb4 denotes the system for which
stations 2 and 3 are pooled, P [2,3] = 4, and Q[2,3] = 5. In Tables 1 and 2, the second
and fourth columns, respectively, provide the steady-state throughput and WIP for
different parallel pooling structures with β = 1 for lines with N ∈ {3, 4} and common
buffer sizes b j ∈ {0, 3} for j ∈ {2, . . . , N }. We also provide the percentage increase
in throughput and percentage decrease/increase in WIP obtained over the original line
by each pooling structure with β = 1 in Tables 1 and 2. Finally, in the last column,
we present the largest value of β under which the specified pooling structure would
increase the long-run average throughput (denoted by β). For complete pooling, it is
not difficult to see that the throughput under scaling parameter β equals T [1,N ]/β, and
hence β = T [1,N ]/T . For partial pooling, we identify the value of β numerically.

We can summarize our conclusions on parallel pooling from Tables 1 and 2 as
follows:
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Table 2 Throughput (THP) and WIP of balanced lines with N ∈ {3, 4} and b j = 3, for j = 2, . . . , N ,
after parallel pooling

System THP % Inc. in
THP

WIP % Inc. in
WIP

% Dec. in
WIP

β

N = 3

1-bbb2-bbb3 0.7767 – 5.7001 – – –

(12)-bbbbbb3 0.9140 17.67 6.0311 5.81 – 1.26

1-bbbbbb(23) 0.9140 17.67 5.7109 0.19 – 1.28

(123) 1.0000 28.75 3.0000 – 47.37 1.28

N = 4

1-bbb2-bbb3-bbb4 0.7477 – 8.0813 – – –

(12)-bbbbbb3-bbb4 0.8225 10.00 9.5895 18.66 – 1.28

1-bbb(23)-bbbbbb4 0.8438 12.85 7.4079 – 8.33 1.25

1-bbbb(23)-bbbbb4 0.8511 13.83 7.9773 – 1.29 1.27

1-bbbbb(23)-bbbb4 0.8511 13.83 8.4934 5.10 – 1.27

1-bbbbbb(23)-bbb4 0.8438 12.85 9.0346 11.80 – 1.25

1-bbb2-bbbbbb(34) 0.8232 10.09 6.6745 – 17.41 1.28

(123)-bbbbbbbbb4 0.9428 26.09 8.6662 7.24 – 1.33

1-bbbbbbbbb(234) 0.9428 26.09 8.1048 0.29 – 1.33

(1234) 1.0000 33.74 4.0000 – 50.50 1.33

1. When pooling does not increase mean service times (i.e., β = 1), parallel pooling
any group of adjacent stations in a balanced line improves the system through-
put regardless of the buffer allocation around the pooled station. Moreover, this
improvement in throughput in balanced lines is substantial, falling in the range of
10.00–94.25% when N ∈ {3, 4}.

2. In all cases considered, pooling is beneficial even when it leads to 25% longer
service times. This tolerance for longer service times is even larger for systems
with smaller buffers and with a larger number of pooled stations.

3. The more stations are pooled, the better the throughput gets. Also, systems with
the same number of stations after pooling provide similar throughput.

4. Pooling stations near the middle of the line yields better throughput than pooling
those at the beginning or end of the line when systems with the same number of
pooled stations are compared.

5. Parallel pooling several stations at the end of the line provides slightly better
throughput than parallel pooling several stations at the beginning of the line if
there are more than two stations in the pooled system (for example, compare
pooled systems (12)-3-4 and 1-2-(34) in Table 1). This is consistent with Hillier
and So [13], who provide numerical results that support the fact that placing any
extra servers at the last station in a tandem line provides slightly better throughput
than placing these extra servers at the first station.

6. Partial parallel pooling (i.e., parallel pooling only a subset of the stations in the
tandem line) generally increases the WIP in balanced lines. (This does not contra-
dict our conclusion in Sect. 3 because of the differences in the assumption about
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job arrivals in the two sections.) One exception is when several stations at the end
of the line are pooled or more buffers are allocated toward the end of the line, in
which case jobs may be pushed out of the system more efficiently.

Tables 1 and 2 also provide useful insights on the comparison of parallel and
cooperative pooling structures when compared with Tables 1 and 2 in Argon and
Andradóttir [4]. One important observation is that all of the above listed conclusions
for parallel pooling under β = 1 also hold for cooperative pooling, except for items 5
and 6. For cooperative pooling, pooling at the beginning or end of the line yields the
same throughput in a balanced line due to the reversibility principle of tandem lines
with a single server at each station. Note that the reversibility principle for tandem
lines with multiple parallel servers holds if and only if there are two stations in the
system; see, for example, Theorem 4 in Yamazaki et al. [26]. Also, cooperative and
parallel pooling structures differ with respect to their effects on WIP. In particular,
parallel pooling increases WIP in more scenarios than cooperative pooling does when
lines with the same pooled stations and the same number of total physical spaces
are compared. Moreover, parallel pooling seems to provide a smaller throughput than
cooperative pooling inmost cases,which is consistentwith Proposition 8. For example,
in the balanced line with four stations and zero buffers, parallel pooling the first
three stations provides approximately 10% smaller throughput than the corresponding
cooperative pooling structure (0.7570 vs. 0.8421). Note, however, that the difference
between the throughputs of the pooled system with cooperative servers and the pooled
system with parallel servers diminishes for larger buffer sizes. This is consistent with
Corollary 2, which proves which parallel pooling and cooperative pooling provide
the same throughput when there are infinite buffers around the pooled station. The
only cases where parallel pooling provides the same or slightly better throughput
are when all stations in the line are pooled or when all buffers between the stations
that are pooled in the original line are added only to one side of the pooled station
(for example, for 1-bbb(23)bbbbbb-4), respectively. Finally, parallel pooling seems to
provide consistently higher WIP than cooperative pooling. This makes intuitive sense
because a larger number of jobs in service is needed by a station with parallel servers
to achieve a similar service capacity with a station having cooperative servers.

We next look at the effects of parallel pooling on the steady-state throughput and
WIPof unbalanced tandem lineswith four stations. For these tandem lines,we generate
the service rate γ j at each station j ∈ {1, 2, 3, 4} independently from a uniform
distribution on the range [0.1, 20.1]. We consider both lines that have the same amount
of buffer spaces between any two stations (i.e., b2 = b3 = b4 ∈ {0, 3}) and lines for
which the buffers between any two stations are generated independently fromadiscrete
uniformdistribution on the set {0, 1, 2, 3}. Using this experimental setting,we generate
5000 lines independently and provide a summary of the results for β ∈ {1, 1.25} in
Tables 3 and 4, respectively. In particular, based on these 5000 instances, we estimate
the probability of observing an increase in the system throughput and WIP, and for
those cases in which parallel pooling increases the system throughput, we estimate a
95% confidence interval on the percentage increase in throughput over the unpooled
system. Confidence intervals on percentage decrease in throughput and percentage
increase/decrease in WIP are computed similarly.
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Table 3 Throughput (THP) and WIP of unbalanced lines with N = 4, after parallel pooling with β = 1

System Prob. of Incr. % Incr. % Decr. Prob. of Incr. % Incr. % Decr.
in THP in THP in THP in WIP in WIP in WIP

Common buffer size = 0

(12)-3-4 1.0000 27.20 ± 0.75 – 1.0000 17.73 ± 0.60 –

1-(23)-4 1.0000 29.68 ± 0.72 – 0.8406 10.58 ± 0.38 2.19 ± 0.17

1-2-(34) 1.0000 28.40 ± 0.76 – 0.3100 11.68 ± 0.50 3.94 ± 0.12

(123)-4 1.0000 75.37 ± 1.35 – 1.0000 34.87 ± 1.04 –

1-(234) 1.0000 75.20 ± 1.37 – 0.6828 24.02 ± 0.77 4.75 ± 0.23

(1234) 1.0000 148.59 ± 1.35 – 1.0000 52.53 ± 1.44 –

Common buffer size = 3

(12)-B3-4 1.0000 25.37 ± 0.83 – 0.8004 25.44 ± 1.12 34.39 ± 1.08

1-(23)-B4 0.9936 25.34 ± 0.81 0.0006 ± 0.0002 0.4310 9.41 ± 0.45 17.87 ± 0.46

1-B(23)-4 0.9960 25.28 ± 0.81 0.0005 ± 0.0002 0.6876 21.97 ± 0.89 10.55 ± 0.49

1-(23)-4* 1.0000 25.16 ± 0.81 – 0.6140 8.49 ± 0.34 10.75 ± 0.43

1-2-B(34) 1.0000 25.22 ± 0.84 – 0.2556 23.82 ± 0.83 11.70 ± 0.39

(123)-B4 1.0000 64.77 ± 1.50 – 0.5556 48.82 ± 2.39 39.14 ± 0.76

1-B(234) 1.0000 64.51 ± 1.52 – 0.5522 54.13 ± 1.75 21.34 ± 0.73

(1234) 1.0000 117.74 ± 1.83 – 0.1790 106.58 ± 5.40 48.63 ± 0.52

Buffer sizes ∼ uniform{0, 1, 2, 3}
(12)-B3-4 1.0000 27.48 ± 0.82 – 0.8708 23.48 ± 0.89 25.67 ± 1.29

1-(23)-B4 0.9978 28.09 ± 0.79 0.10 ± 0.09 0.5222 11.50 ± 0.50 14.05 ± 0.49

1-B(23)-4 0.9976 28.12 ± 0.79 0.06 ± 0.05 0.7320 20.71 ± 0.98 7.49 ± 0.42

1-(23)-4* 1.0000 28.00 ± 0.78 – 0.6804 10.39 ± 0.40 7.78 ± 0.38

1-2-B(34) 1.0000 27.65 ± 0.83 – 0.2534 23.56 ± 1.23 9.72 ± 0.31

(123)-B4 1.0000 71.68 ± 1.45 – 0.6866 43.02 ± 1.71 28.19 ± 0.84

1-B(234) 1.0000 71.41 ± 1.47 – 0.5678 50.78 ± 2.04 14.78 ± 0.58

(1234) 1.0000 128.57 ± 1.67 – 0.3518 73.31 ± 3.37 33.92 ± 0.59

In Tables 3 and 4, we use a capital letter “B” to indicate the location where the
buffers between the pooled stations are placed.When the buffer sizes are positive, then
there are more than two buffer allocation schemes to consider when stations 2 and 3
are pooled (for example, if there are two buffers between stations 2 and 3, then we
can either place the two buffers before or after the pooled station or place one buffer
before and the other buffer after the pooled station). Among all possible alternatives,
we only consider placing all buffers before or after the pooled station. Moreover, we
also consider the pooled system in which all buffers between stations 2 and 3 are
placed before (after) the pooled station if station 3 (2) is slower than station 2 (3); we
denote this system by 1-(23)-4*.We consider this particular buffer allocation structure
since it corresponds to the buffer allocation scheme that we have recommended for
cooperative pooling based on Proposition 1 of Argon and Andradóttir [4] (i.e., placing
the pooled station at the position of the slowest station among the stations that are
pooled). Note that there is a rich literature on the optimal buffer allocation problem in
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Table 4 Throughput (THP) and WIP of unbalanced lines with N = 4, after parallel pooling with
β = 1.25

System Prob. of Incr. % Incr. % Decr. Prob. of Incr. % Incr. % Decr.
in THP in THP in THP in WIP in WIP in WIP

Common buffer size = 0

(12)-3-4 1.0000 14.95 ± 0.43 – 1.0000 14.34 ± 0.56 –

1-(23)-4 0.9760 16.53 ± 0.41 0.02 ± 0.05 0.9734 9.93 ± 0.33 1.57 ± 0.22

1-2-(34) 1.0000 16.06 ± 0.43 – 0.8458 7.59 ± 0.25 1.94 ± 0.14

(123)-4 1.0000 49.81 ± 0.91 – 1.0000 32.58 ± 1.02 –

1-(234) 1.0000 49.78 ± 0.92 – 0.9032 22.42 ± 0.63 3.18 ± 0.32

(1234) 1.0000 98.87 ± 1.08 – 1.0000 52.53 ± 1.44 –

Common buffer size = 3

(12)-B3-4 0.9446 12.87 ± 0.49 2.13 ± 0.14 0.6666 17.12 ± 0.94 31.40 ± 0.88

1-(23)-B4 0.8716 13.66 ± 0.51 0.98 ± 0.09 0.4808 6.21 ± 0.31 17.03 ± 0.47

1-B(23)-4 0.8860 13.45 ± 0.50 1.05 ± 0.10 0.8552 18.77 ± 0.75 5.55 ± 0.54

1-(23)-4* 0.9416 12.60 ± 0.48 1.70 ± 0.13 0.7348 5.83 ± 0.22 6.16 ± 0.33

1-2-B(34) 0.9524 12.79 ± 0.49 2.17 ± 0.15 0.5974 15.25 ± 0.57 5.61 ± 0.35

(123)-B4 1.0000 39.09 ± 1.04 – 0.4602 42.26 ± 2.34 40.52 ± 0.66

1-B(234) 1.0000 39.10 ± 1.05 – 0.7300 48.82 ± 1.50 13.83 ± 0.74

(1234) 1.0000 74.19 ± 1.47 – 0.1790 106.58 ± 5.40 48.63 ± 0.52

Buffer sizes ∼ uniform{0, 1, 2, 3}
(12)-B3-4 0.9910 14.65 ± 0.46 2.02 ± 0.36 0.7818 16.84 ± 0.76 23.03 ± 0.99

1-(23)-B4 0.9642 15.10 ± 0.46 1.03 ± 0.17 0.6062 8.76 ± 0.39 14.64 ± 0.56

1-B(23)-4 0.9640 15.15 ± 0.46 1.08 ± 0.17 0.8978 17.79 ± 0.83 4.70 ± 0.50

1-(23)-4* 0.9914 14.63 ± 0.44 1.56 ± 0.42 0.8244 7.98 ± 0.30 5.07 ± 0.35

1-2-B(34) 0.9946 14.83 ± 0.47 1.90 ± 0.39 0.6208 13.97 ± 0.69 4.99 ± 0.27

(123)-B4 1.0000 45.33 ± 0.98 – 0.6048 38.47 ± 1.71 28.41 ± 0.75

1-B(234) 1.0000 45.31 ± 0.99 – 0.7746 44.16 ± 1.66 10.30 ± 0.63

(1234) 1.0000 82.86 ± 1.34 – 0.3518 73.31 ± 3.37 33.92 ± 0.59

finite-capacity tandem networks; see, for example, [11,14,23]. Since themain focus of
this paper is observing the effects of pooling, we do not seek the best buffer allocation
design but instead identify simple buffer allocation structures under which pooling
improves the steady-state throughput.

Tables 3 and 4 show that pooling generally improves throughput in unbalanced
lines, even when it results in larger service times, and that the benefit is larger when
more stations are pooled. From Table 3, one can observe that parallel pooling several
stations at the beginning or end of a line always improves the system throughput when
β = 1 regardless of the buffer sizes in the system.Moreover, parallel pooling any group
of stations improves the system throughput if there are zero buffers in the system. On
the other hand, when the buffers between at least some of the stations are positive, then
pooling intermediate stations may decrease the system throughput if the buffers are
not allocated properly around the pooled station. (Note that this result is in agreement
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with Example 1, which suggests that the conditions on the buffers in Proposition 1 are
at least to some extent necessary.) If the buffer allocation is performed as in system
1-(23)-4*, then intermediate pooling improves the throughput in all 5000 instances.
However, even if the buffer allocation is not done properly, intermediate pooling
decreases the throughput only very rarely and the amount of decrease is marginal.
Indeed, when we first designed the experiment presented in Table 3, we used the
same range for the uniform distribution of service rates, namely, [0.5, 2.5], used in
the corresponding experiment for cooperative pooling by Argon and Andradóttir [4]
presented in their Table 4. However, for that experiment, none of the 5000 instances
resulted in a decrease in throughput by parallel pooling the middle stations. Hence, we
had to use a wider range of service rates (i.e., [0.1, 20.1]) to create highly unbalanced
lines in order to observe lines where parallel pooling would decrease throughput due
to poor buffer allocation. This suggests that buffer allocation is less of a concern for
parallel pooling compared to cooperative pooling.

Table 3 also provides insights into the comparison of parallel and cooperative pool-
ing structures when compared to Table 6 of Argon and Andradóttir [4], which uses
the same range for the uniformly distributed service rates, namely, [0.1, 20.1]. In
particular, these two tables present results on the same set of numerical experiments
except that one applies parallel pooling, whereas the other employs cooperative pool-
ing without adding extra buffers to equate the total number of storage spaces. This
comparison shows that parallel pooling results in a larger fraction of instances where
pooling increases throughput than cooperative pooling (without added storage spaces)
but at a cost of degradation in WIP. However, when either form of pooling increases
the throughput, the average percentage increase is similar.

Finally, from Table 4, we observe that even when pooling causes a 25% increase
in mean service times at the pooled stations, only a small fraction of the unbalanced
lines generated had a degradation in throughput by pooling. This rare reduction in
throughput happened mostly by pooling intermediate stations and it was no larger
than 2.2% on average. WIP appears to be more likely to increase by pooling under
β = 1.25when compared to the case with β = 1 except when stations at the beginning
are pooled. On the other hand, the percentage change in WIP is always smaller when
the WIP increases and usually smaller when the WIP decreases (except when three
stations are pooled at the beginning of the line) as compared to the case where pooling
does not change the mean service times.

6 Conclusions

For a tandem network of single-server queueswith finite buffers, general service times,
and flexible, but non-collaborative, servers, we have considered parallel pooling sev-
eral stations with the objective of improving the system throughput. We first provided
sufficient conditions on the service times and buffers under which parallel pooling
several stations permanently decreases the departure times from the system and hence
increases the steady-state system throughput. More specifically, we have shown ana-
lytically that if the service time of each job at the pooled station is no larger than
the sum of the service times at the stations that are pooled and there are no buffers
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between the stations that are pooled, then parallel pooling will result in earlier depar-
tures from the system. Our numerical results on lines with three and four stations
suggest that parallel pooling in a system with identical servers generally improves
the system throughput even when there are buffers between the pooled stations in the
original line and pooling results in longer service times at the pooled stations. Fur-
thermore, this improvement by parallel pooling can be substantial and is increasing in
the number of stations pooled.

In this article, we also compared the effects of having multiple parallel servers
versus a pooled team of cooperative servers on the throughput of tandem lines. Our
analytical and numerical results suggest that when the maximalWIP capacity of a line
(including the spaces allocated for service and waiting) is finite and constant, then
in most cases having cooperative servers results in a larger throughput than having
parallel servers under the assumption that servers are identical and service rates are
additive. However, if pooling servers into teams results in a reduction of physical
spaces where jobs could be stored, then having parallel servers is more likely to yield
a higher throughput.
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Appendix

In this appendix, we provide proofs of our theoretical results, lemmas that are used
in some of our proofs, and other supplementary material. We use Lemmas 1 and 2 to
prove Proposition 1. The proof of Lemma 1 is trivial and hence is omitted.

Lemma 1 If ai and bi are some real numbers for i = 1, . . . , n, where n is a positive
integer, then we have

max
i=1,...,n

{ai } − max
i=1,...,n

{bi } ≥ min
i=1,...,n

{ai − bi } .

Lemma 2 Let {ai }ni=1 be a sequence of real numbers, where n is a positive integer.
Then, for J ∈ {2, . . . , n}, k ∈ {1, . . . , J − 1}, and � j ∈ {1, . . . , n}, for all j ∈
{1, . . . , k}, we have

�
(n)
J {ai : i ∈ {1, . . . , n}} ≤ �

(n−k)
J−k {ai : i ∈ {1, . . . , n}\{�1, . . . , �k}} .

Proof of Lemma 2 Let m ≤ k be the number of elements in {a�1, . . . , a�k } that are
greater than �

(n)
J {ai : i ∈ {1, . . . , n}}. Then,

�
(n)
J {ai : i ∈ {1, . . . , n}} = �

(n−k)
J−m {ai : i ∈ {1, . . . , n}\{�1, . . . , �k}}

≤ �
(n−k)
J−k {ai : i ∈ {1, . . . , n}\{�1, . . . , �k}} ,
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where the equality holds because when m elements that are larger than �
(n)
J {ai :

i ∈ {1, . . . , n}} are taken out from the set, then the J th largest element becomes the
(J − m)th largest in the new set. �	

Proof of Proposition 1 For j ∈ {1, . . . , K − 1, M, . . . , N } and i ≥ 1, let 
 j (i) =
Dj (i) − D[K ,M]

j (i). Also, let 
 j (i) = DM (i) − A j−K+1(i − M + j + 1) for j ∈
{K , . . . , M − 1} and i ≥ 1. For convenience, assume that 
 j (i) = 0 when j /∈
{1, . . . , N } or i ≤ 0. Consider now the following inequalities for i ≥ 1:


 j (i) ≥ min
{

 j−1 (i) ,
 j (i − 1) ,
 j+1

(
i − b j+1 − 1

)}
,

∀ j ∈ {1, . . . , K − 2, M + 1, . . . , N }; (8)


K−1 (i) ≥ min
{

K−2 (i) ,
K−1 (i − 1) ,
M

(
i − P [K ,M] − M + K − 1

)}
;
(9)


K (i) ≥ min {
K−1 (i) ,
M (i − M + K − 1) ,
K (i − 1)} ; (10)


 j (i) ≥ 
 j−1 (i) , ∀ j ∈ {K + 1, . . . , M − 1}; (11)


M (i) ≥ min
{

M−1 (i) ,
M+1

(
i − Q[K ,M] − 1

)}
. (12)

It is easy to see that the inequalities (8) through (12) imply that 
 j (i) ≥ 0 for all
i ≥ 1 and j ∈ {1, . . . , N }. Then, it remains to show that the inequalities (8) through
(12) are true.

We first provide a recursive formula that the departure times Dj (i) must satisfy.
For convenience, we assume that Dj (i) = X j (i) = 0 if j /∈ {1, . . . , N } or i ≤ 0.
Then, for all i ≥ 1, we have

Dj (i) = max
{
Dj−1 (i)+X j (i), Dj (i−1)+X j (i), Dj+1

(
i − b j+1 − 1

)}
,∀ j∈{1, . . . , N }.

(13)

Now, using condition (i), Lemma 1, and Eqs. (2) and (13) gives inequality (8). Simi-
larly, using condition (i), Lemma 1, and Eqs. (3) and (13), we obtain


K−1 (i) ≥ min
{

K−2 (i) ,
K−1 (i − 1) , DK (i − bK − 1)

−D[K ,M]
M

(
i − P [K ,M] − M + K − 1

)}
.

Then, using Eq. (13) and the condition that b j = 0 for j ∈ {K +1, . . . , M} iteratively
yields DK (i − bK − 1) ≥ DM (i − bK − M + K − 1) for all i ≥ 1. The condition
that P [K ,M] ≥ bK now yields DK (i − bK − 1) ≥ DM (i − P [K ,M] − M + K − 1) for
all i ≥ 1, which completes the proof of inequality (9).

Next, we prove inequality (10). Since A1(i) ≥ A j (i) for all i ≥ 1 and j ∈
{1, . . . , M − K }, Eq. (6) gives
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A1(i + 1) = max
{
D[K ,M]

K−1 (i + M − K ) + X [K ,M](i + M − K ),

D[K ,M]
M (i − 1) + X [K ,M](i + M − K ), A1(i)

}
,

for all i ≥ 1. Then, it is easy to obtain that


K (i) = min

{
DM (i) − D[K ,M]

K−1 (i) − X [K ,M] (i) , DM (i) − D[K ,M]
M (i − M + K − 1)

−X [K ,M] (i) , DM (i) − A1 (i − M + K )

}
. (14)

It now follows from condition (i i) and the fact that DM (i) ≥ DK−1(i)+∑M
j=K X j (i)

for all i ≥ 1 that the first term of the minimum operator in Eq. (14) is greater than or
equal to 
K−1(i). Similarly, note that DM (i) ≥ DK (i) +∑M

j=K+1 X j (i) ≥ DK (i −
1) +∑M

j=K X j (i), for all i ≥ 1, so that condition (i i) implies that the second term of

the minimum operator in Eq. (14) is greater than or equal to DK (i − 1)− D[K ,M]
M (i −

M + K − 1), for all i ≥ 1. Moreover, using Eq. (13) and the condition that b j = 0 for
j ∈ {K +1, . . . , M} iteratively, one can obtain that DK (i −1) ≥ DM (i −M+K −1)
and hence that the second term of the minimum operator in Eq. (14) is greater than or
equal to 
M (i − M + K − 1). Noting that DM (i) ≥ DM (i − 1) for all i ≥ 1 yields
inequality (10).

We next prove inequality (11). Using Lemma 2 with k = j − 1 and Eq. (6), we
have

A j (i + 1) ≤ max
{
A j−1 (i) , . . . , AM−K (i)

} = A j−1 (i) ,

for j ∈ {2, . . . , M − K } and i ≥ 1. Then, inequality (11) is immediate. Finally,
we show that inequality (12) is true. Equation (5) implies that D[K ,M]

M (i) ≤
max{AM−K (i), D[K ,M]

M+1 (i − Q[K ,M] − 1)}, and hence that


M (i) ≥ min
{
DM (i) − AM−K (i), DM (i) − D[K ,M]

M+1

(
i − Q[K ,M] − 1

)}
, (15)

for all i ≥ 1. Note that the first term of the minimum operator in inequality (15) is
equal to 
M−1(i), for all i ≥ 1. Moreover, using Eq. (13) and the condition that
Q[K ,M] ≥ bM+1, we obtain that DM (i) ≥ DM+1(i − Q[K ,M] − 1), for all i ≥ 1,
which immediately yields that the second term of the minimum operator in inequality
(15) is greater than or equal to 
M+1(i − Q[K ,M] − 1) for all i ≥ 1, and the proof is
complete. �	

To prove Proposition 2, we need the following lemma, whose proof is immediate.

Lemma 3 Let Y = {Y(i)}i≥1 and Z = {Z(i)}i≥1 be two stochastic processes. If
Y ≤st Z , then φ(Y) ≤st φ(Z) for every non-decreasing functional φ : R∞ → R

∞.
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Proof of Proposition 2 Let φ : R
∞+ → R

∞+ be defined by {D[K ,M](i)}i≥1 =
φ({X[K ,M](i)}i≥1), see Eqs. (2), (3), (5), and (6). Define also X̃[K ,M](i) =(
X1,K−1,

∑M
k=K Xk(i),XM+1,N (i)

)
, for all i ≥ 1, and {D̃[K ,M](i)}i≥1 = φ({

X̃[K ,M](i)
}
i≥1

)
. Then, Proposition 1 yields that {D̃[K ,M](i)}i≥1 ≤ {D(i)}i≥1. It

is clear that φ is a non-decreasing functional. Hence, by Lemma 3 and inequality (7),
we have {D[K ,M](i)}i≥1 ≤st {D̃[K ,M](i)}i≥1, and the result follows. �	

Wedefer the proofs of Proposition 3 andCorollary 1 as they are based onProposition
7. We need the following lemma to prove Proposition 4.

Lemma 4 If ai and bi are some positive real numbers for i = 1, . . . , n, where n is a
positive integer, then we have

min
i=1,...,n

{
ai
bi

}
≤
∑n

i=1 ai∑n
i=1 bi

. (16)

Proof of Lemma 4 Let J ∈ {1, . . . , n} be the argument that achieves the minimum in
(16), so that aJ bi ≤ aibJ for all i = 1, . . . , n. Then, we have

bJ

n∑

i=1

ai − aJ

n∑

i=1

bi =
n∑

i=1

(aibJ − aJ bi ) ≥ 0.

�	
Proof of Proposition 4 Let T [K ,M]∞ be the throughput of the tandem linewhere stations
K through M are parallel pooled and all buffers in the system are replaced by infinite
capacity buffers. Then, due to the monotonicity of the throughput of a tandem line in
the buffer sizes (see, for example, page 186 in Buzacott and Shanthikumar [8]), we
have T [K ,M] ≤ T [K ,M]∞ .Wewill next show that T [K ,M]∞ ≤ T [1,N ], whichwill complete
the proof.

Under the assumptions on service times and Assumptions 1 and 2, T [K ,M]∞ exists
and satisfies

T [K ,M]∞ = min

⎧
⎨

⎩ min
j∈{1,...,K−1,M+1,...,N }

{
1

E[X j (1)]
}

,

M∑

�=K

θ�/

M∑

j=K

θ j E[X j (1)]
⎫
⎬

⎭

≤
∑N

�=1 θ�∑N
j=1 θ j E[X j (1)]

= T [1,N ],

where the inequality follows from Lemma 4. �	
Proof of Proposition 5 Because the service times are i.i.d. and the buffers are infinite,
the throughput of the original line is given by T = 1/E[X J (1)]. Similarly, the through-
put of the pooled line where stations K through M are pooled will be determined by
the bottleneck station, i.e.,

T [K ,M] = min

{
min

j∈{1,...,N }\{K ,...,M}

{
1

E[X j (1)]
}

,
M − K + 1

∑M
j=K E

[
X j (1)

]
}
,
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under Assumption 1 and the condition that servers K through M are identical. Hence,
if K ≤ J ≤ M and E[X j (1)]/E[X J (1)] → 0 for all j ∈ {1, . . . , N }\{J },

T [K ,M]

T
→ M − K + 1.

�	
Example 2 Suppose that we pool stations 1 and 2 in a tandem line of three stations
where b1 = ∞ and b2 = b3 = 0. Suppose also that the service times at the pooled
station satisfy X [1,2]

� (i) = X1(i) + X2(i) for � = 1, 2 and i ≥ 1, P [1,2] = ∞, and
Q[1,2] = 0. For the original line, consider a sample path where (X0(1), X0(2)) =
(0, 1), (X1(1), X1(2)) = (1, 1), (X2(1), X2(2)) = (3, 1), and (X3(1), X3(2)) =
(1, 3) minutes. For the pooled line, suppose that (X [1,2]

0 (1), X [1,2]
0 (2)) = (0, 1) and

(X [1,2]
3 (1), X [1,2]

3 (2)) = (1, 2) minutes. Note that this example satisfies all conditions

of Proposition 1 and the condition that X [K ,M]
0 (i) ≤ X0(i) for all i ≥ 1, and hence

D[1,2]
3 (i) ≤ D3(i) for i = 1, 2. However, in the pooled line, the first job to arrive at

the system departs as the second job from the system. This results in a longer sojourn
time for this job by pooling. In particular, the sojourn time of the first job arriving
to the original line is five minutes, whereas its sojourn time in the pooled line is six
minutes.

Proof of Proposition 6 For all t ≥ 0, let B[K ,M]
j (t) be the total number of departures

from station j ∈ {1, . . . , K − 1, M, . . . , N } by time t in the pooled system and Bj (t)
be the total number of departures from station j ∈ {1, . . . , N } by time t in the unpooled
system. Let also B[K ,M]

0 (t) = B0(t) be the total number of arrivals by time t ≥ 0 and

D[K ,M]
0 (i) = D0(i) be the arrival time of job i ≥ 1 at each system. For notational

convenience, assume that D[K ,M]
K (i) = D[K ,M]

M (i) and B[K ,M]
K (t) = B[K ,M]

M (t), for
all i ≥ 1 and t ≥ 0. Then, for all t ≥ 0, we have

H(t) =
N−1∑

j=0

h j+1

Bj (t)∑

i=1

(
min{t, Dj+1(i)} − Dj (i)

)
and

H [K ,M](t) =
∑

j∈{0,...,K−2}⋃{M,...,N−1}
h j+1

B[K ,M]
j (t)∑

i=1

(
min{t, D[K ,M]

j+1 (i)} − D[K ,M]
j (i)

)

+ h[K ,M]
B[K ,M]
K−1 (t)∑

i=1

(
min{t, D[K ,M]

K (i)} − D[K ,M]
K−1 (i)

)
.

Consequently, for all t ≥ 0, we obtain

H(t) − H [K ,M](t)

=
N−1∑

j=K−1

h j+1

Bj (t)∑

i=1

(
min{t, Dj+1(i)} − Dj (i)

)
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−
N−1∑

j=M

h j+1

B[K ,M]
j (t)∑

i=1

(
min{t, D[K ,M]

j+1 (i)} − D[K ,M]
j (i)

)

− h[K ,M]
B[K ,M]
K−1 (t)∑

i=1

(
min{t, D[K ,M]

K (i)} − D[K ,M]
K−1 (i)

)

+
K−2∑

j=0

h j+1

( Bj (t)∑

i=1

(
min{t, Dj+1(i)} − Dj (i)

)

−
B[K ,M]
j (t)∑

i=1

(
min{t, D[K ,M]

j+1 (i)} − D[K ,M]
j (i)

))
. (17)

We start by dealing with the sum of the first three terms of Eq. (17). First, note that
for all �,m ∈ {0, . . . , N − 1}, � ≤ m, and t ≥ 0, we have

m∑

j=l

B j (t)∑

i=1

(
min{t, Dj+1(i)} − Dj (i)

)

=
m∑

j=�

Bj+1(t)∑

i=1

Dj+1(i) +
m∑

j=�

Bj (t)∑

i=Bj+1(t)+1

t −
m∑

j=�

Bj (t)∑

i=1

Dj (i)

=
Bm+1(t)∑

i=1

Dm+1(i) +
B�(t)∑

i=Bm+1(t)+1

t −
B�(t)∑

i=1

D�(i)

=
B�(t)∑

i=1

(
min{t, Dm+1(i)} − D�(i)

)
. (18)

Similarly, for all �,m ∈ {0, . . . , K − 1} ∪ {M, . . . , N − 1}, � ≤ m, and t ≥ 0, we can
obtain

∑

j∈{�,...,m}\
{K ,...,M−1}

B[K ,M]
j (t)∑

i=1

(
min{t, D[K ,M]

j+1 (i)} − D[K ,M]
j (i)

)

=
B[K ,M]

� (t)∑

i=1

(
min{t, D[K ,M]

m+1 (i)} − D[K ,M]
� (i)

)
. (19)

Now, by conditions (i i i), (iv), and (v), and Eqs. (18) and (19), the sum of the first
three terms of Eq. (17) is greater than or equal to
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hK

⎧
⎪⎨

⎪⎩

BK−1(t)∑

i=1

(
min{t, DN (i)} − DK−1(i)

)
−
B[K ,M]
K−1 (t)∑

i=1

(
min{t, D[K ,M]

N (i)} − D[K ,M]
K−1 (i)

)
⎫
⎪⎬

⎪⎭
.

(20)

Next, suppose that condition (i i)(a) holds. Then, the fourth term of Eq. (17) reduces
to

hK

B0(t)∑

i=1

(
min{t, DK−1(i)} − min{t, D[K ,M]

K−1 (i)}
)

,

by Eqs. (18) and (19). Then, using Eq. (20), we have

H(t) − H [K ,M](t) ≥ hK

⎧
⎨

⎩

BK−1(t)∑

i=1

(
min{t, DN (i)} − DK−1(i)

)

−
B[K ,M]
K−1 (t)∑

i=1

(
min{t, D[K ,M]

N (i)} − D[K ,M]
K−1 (i)

)
+

B0(t)∑

i=1

min{t, DK−1(i)}

−
B0(t)∑

i=1

min{t, D[K ,M]
K−1 (i)}

⎫
⎬

⎭

= hK

⎧
⎪⎨

⎪⎩

BK−1(t)∑

i=1

min{t, DN (i)} −
BK−1(t)∑

i=1

DK−1(i) −
B[K ,M]
K−1 (t)∑

i=1

min{t, D[K ,M]
N (i)}

+
B[K ,M]
K−1 (t)∑

i=1

D[K ,M]
K−1 (i) +

BK−1(t)∑

i=1

DK−1(i) +
B0(t)∑

i=BK−1(t)+1

t

−
B[K ,M]
K−1 (t)∑

i=1

D[K ,M]
K−1 (i) −

B0(t)∑

i=B[K ,M]
K−1 (t)+1

t

⎫
⎪⎬

⎪⎭

= hK

⎧
⎪⎨

⎪⎩

BK−1(t)∑

i=1

min{t, DN (i)} −
B[K ,M]
K−1 (t)∑

i=1

min{t, D[K ,M]
N (i)} +

B0(t)∑

i=BK−1(t)+1

t

−
B0(t)∑

i=B[K ,M]
K−1 (t)+1

t

⎫
⎪⎬

⎪⎭

= hK

B0(t)∑

i=1

(
min{t, DN (i)} − min{t, D[K ,M]

N (i)}
)

,
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which is nonnegative by condition (i).
Finally, suppose that condition (i i)(b) holds, in which case we have Dj (i) =

D[K ,M]
j (i) and Bj (t) = B[K ,M]

j (t) for j ∈ {0, . . . , K − 1}, i ≥ 1, and t ≥ 0.
Then, the fourth term of Eq. (17) becomes zero, and using Eq. (20) and condition (i),
we have

H(t) − H [K ,M](t) ≥ hK

BK−1(t)∑

i=1

(
min{t, DN (i)} − min{t, D[K ,M]

N (i)}
)

≥ 0.

�	
Proof of Proposition 7 Under Assumptions 2 and 3, we have

T (1,N ) = lim
n→∞

n∑n
i=1 X

(1,N )(i)
= lim

n→∞
n
∑N

�=1 θ�∑n
i=1
∑N

j=1 θ j X j (i)
,

and, under Assumptions 1 and 2, we have

T [1,N ] =
N∑

�=1

lim
n→∞

n
∑n

i=1 X
[1,N ]
� (i)

= lim
n→∞

n
∑N

�=1 θ�∑n
i=1
∑N

j=1 θ j X j (i)
.

These limits exist and are equal by the strong law of large numbers because{∑N
j=1 θ j X j (i)

}

i≥1
is an i.i.d. sequence of random variables with finite mean, which

completes the proof. �	
Proof of Proposition 3 Because {X(i)}i≥1 is a sequence of i.i.d. random vectors with
finite component means and θ j ∈ [0,∞) for all j ∈ {1, . . . , N }, {∑N

j=1 θ j X j (i)}i≥1
is a sequence of i.i.d. random variables with finite mean. Hence, Proposition 7 yields
that T [1,N ] = T (1,N ) if Assumptions 1, 2, and 3 hold. Combining this with the fact
that T (1,N ) ≥ T under Assumption 3 by Theorem 1 in Argon and Andradóttir [4]
completes the proof. �	
Proof of Corollary 1 Let tm,n denote the throughput of the tandem line that is obtained
by removing stations 1 throughm−1 and stations n+1 through N in the original line,
where 1 ≤ m ≤ n ≤ N . If in the original line bK = bM+1 = ∞, then its throughput
will exist and be equal to min{t1,K−1, tK ,M , tM+1,N } (see, for example, Muth [19])
under the assumption that the service times are i.i.d. with finite mean. Moreover, since
the throughput of a tandem line decreases with a decrease in the buffer sizes (see, for
example, page 186 in Buzacott and Shanthikumar [8]), we have

T ≤ min{t1,K−1, tK ,M , tM+1,N } (21)

as bK and bM+1 are not necessarily infinite in the original line.
Now, let t [K ,M] be the throughput of the system that consists of only the pooled

station with an infinite supply of jobs in front of the pooled station and infinite room
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following it. If the buffers before and after the pooled station are infinite, then we
have T [K ,M] = min{t1,K−1, t [K ,M], tM+1,N }. Using Proposition 3, which implies that
t [K ,M] ≥ tK ,M , and inequality (21), we have T ≤ T [K ,M]. (Note that we here use the
fact that Proposition 3 is still valid assuming that there is a stochastic arrival stream
at the first station and b1 = ∞. See Sect. 3 for this result.) �	

Proof of Corollary 2 Let t (K ,M) be the throughput of the system that consists of only
the pooled station under cooperative pooling with an infinite supply of jobs in front
of the pooled station and infinite room following it. If the buffers before and after
the pooled stations are infinite, then we have T [K ,M] = min{t1,K−1, t [K ,M], tM+1,N }
and T (K ,M) = min{t1,K−1, t (K ,M), tM+1,N } under the given assumption on service
times. (See the proof of Corollary 1 for definitions of t1,K−1 and tM+1,N .) Now, using
Proposition 7, we have t [K ,M] = t (K ,M), which implies that T (K ,M) = T [K ,M]. (Note
that we here use the fact that Proposition 7 is still valid assuming that there is a
stochastic arrival stream at the first station and b1 = ∞. See Sect. 3 for this result.) �	

Proof of Proposition 8 Each one of the four systems can be modeled as a birth-death
process. We start with System 0; the others can be derived from this birth–death
model by simple substitution. Let the system state be the number of jobs that have
finished service at station 1 but not at station 2. Then, the state space will be given by
S = {0, 1, . . . , L1+L2+B0}. Letλ(i) be the birth rate in state i for i = 0, 1, . . . , L1+
L2 + B0 − 1 and θ(i) be the death rate in state i for i = 1, 2, . . . , L1 + L2 + B0. We
have:

λ(i) =
{
L1μ1, for i = 0, . . . , L2 + B0,
(L1 + L2 + B0 − i)μ1, for i = L2 + B0 + 1, . . . , L1 + L2 + B0 − 1;

θ(i) =
{
iμ2, for i = 1, . . . , L2 − 1,
L2μ2, for i = L2, . . . , L1 + L2 + B0.

Next, we let π(i) be the limiting probability of being in state i ∈ S. Note that the
limiting distribution for this birth–death process exists (because the state space is
finite) and is given by π(i) = f (i)αiπ(0) for i ∈ S, where α = L1μ1/(L2μ2),

f (i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Li
2
i ! , for i = 0, . . . , L2 − 1,

L
L2
2
L2! , for i = L2, . . . , L2 + B0 + 1,

L
L2
2 L

L2+B0−i
1 L1!

L2!(L1+L2+B0−i)! , for i = L2 + B0 + 2, . . . , L1 + L2 + B0,

and

π(0) =
(
L1+L2+B0∑

i=0

f (i)αi

)−1

.
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Then, the steady-state throughput of System 0 is given by T0 = π(0)
∑L1+L2+B0

i=1 θ(i)
f (i)αi .
To obtain the steady-state throughput for System j (for j = 1, 2, 3), replace B0 with

Bj in the above expressions for System 0. Furthermore, for System j , where j = 1, 2,
replace L j and μ j with 1 and L jμ j , respectively. Finally, for System 3, replace Li

and μi with 1 and Liμi , respectively, for i = 1, 2. The steady-state throughputs are
then given as follows:

T0 = L1μ1

⎛

⎜⎜⎝

∑L2−1
i=0

Li
2α

i

i ! + L
L2
2 αL2

L2!
∑B0−1

i=0 αi + L
L2
2 L1!αL1+L2+B0−1

L
L1
1 L2!

∑L1−1
i=0

α−i Li
1

i !
∑L2−1

i=0
Li
2α

i

i ! + L
L2
2 αL2

L2!
∑B0−1

i=0 αi + L
L2
2 L1!αL1+L2+B0

L
L1
1 L2!

∑L1
i=0

α−i Li
1

i !

⎞

⎟⎟⎠ ,

(22)

T1 = L1μ1

⎛

⎜⎝
∑L2−1

i=0
Li
2α

i

i ! + L
L2
2 αL2

L2!
∑B1

i=0 αi

∑L2−1
i=0

Li
2α

i

i ! + L
L2
2 αL2

L2!
∑B1+1

i=0 αi

⎞

⎟⎠ , (23)

T2 = L1μ1

⎛

⎜⎜⎝

∑B2
i=0 αi + L1!αL1+B2

L
L1
1

∑L1−1
i=0

α−i Li
1

i !
∑B2

i=0 αi + L1!αL1+B2+1

L
L1
1

∑L1
i=0

α−i Li
1

i !

⎞

⎟⎟⎠ , (24)

T3 = L1μ1

(∑B3+1
i=0 αi

∑B3+2
i=0 αi

)
. (25)

We next perform a pairwise comparison of the steady-state throughputs of these
four systems.
System 0 versus System 1: From Eqs. (22) and (23), we find that T0 ≤ T1 if and only
if

(
B1∑

i=0

αi −
B0∑

i=0

αi − L1!αL1+B0−1

LL1
1

L1−2∑

i=0

α−i Li
1

i !

)(
L2∑

i=0

Li
2α

i

i ! −
L2−1∑

i=0

Li
2α

i+1

i !

)
≥ 0.

(26)
The term in the second parentheses above reduces to

1 +
L2−1∑

i=0

Li
2α

i+1

(i + 1)! (L2 − 1 − i),

which is greater than zero.Hence, T0 ≤ T1 if and only if the term in the first parentheses
in (26) is nonnegative.

We first consider the case where B1 = B0 + L1 − 1, so that System 1 has the same
number of spaces for jobs as System 0. For this case, the term in the first parentheses
in (26) reduces to
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L1!αB0+1

LL1
1

L1−2∑

i=0

αL1−2−i

(
LL1
1

L1! − Li
1

i !

)
,

which is greater than zero because LL1−i
1 i ! > L1! for all i = 0, 1, . . . , L1 − 2. Thus,

when B1 = B0 + L1 − 1, we have T0 < T1.
We next consider the case where B1 = B0, so that Systems 0 and 1 have the same

number of buffer spaces excluding the spaces for servers. For this case, the term in
the first parentheses in (26) reduces to −L1!∑L1−2

i=0 αL1+B0−1−i Li−L1
1 / i ! < 0. Thus,

when B1 = B0, we have T0 > T1.
System 0 versus System 2: From Eqs. (22) and (24), we find that T0 ≤ T2 if and only
if

(
LL2
2 αB0+L2−B2−1

L2!
B2∑

i=0

αi −
L2−1∑

i=0

Li
2α

i

i ! − LL2
2 αL2

L2!
B0−1∑

i=0

αi

)

(
LL1
1 α1−L1

L1! − (1 − α)

L1−1∑

i=0

α−i Li
1

i !

)
≥ 0. (27)

We can show that the term in the second parentheses above is positive as follows:

LL1
1 α1−L1

L1! − (1 − α)

L1−1∑

i=0

α−i Li
1

i ! =
L1∑

i=0

α1−i Li
1

i ! −
L1−1∑

i=0

α−i Li
1

i !

= α +
L1−1∑

i=0

Li
1α

−i

(i + 1)! (L1 − 1 − i) > 0.

Hence, T0 ≤ T2 if and only if the term in the first parentheses in (27) is nonnegative.
We first consider the case where B2 = B0 + L2 − 1, so that System 2 has the same

number of spaces for jobs as System 0. For this case, the term in the first parentheses
in (27) reduces to

L2−2∑

i=0

(
LL2
2

L2! − Li
2

i !

)
αi , (28)

which is positive because LL2−i
2 i ! > L2! for all i = 0, 1, . . . , L2 − 2. Thus, when

B2 = B0 + L2 − 1, we have T0 < T2.
We next consider the case where B2 = B0, so that Systems 0 and 2 have the same

number of buffer spaces excluding the spaces for servers. For this case, the term in the
first parentheses in (27) reduces to −∑L2−2

i=0 Li
2α

i/ i ! < 0. Thus, when B2 = B0, we
have T0 > T2.
System 1 versus System 3: From Eqs. (23) and (25), we find that T1 ≤ T3 if and only
if
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L2−1∑

i=0

Li
2α

i

i ! + LL2
2 αL2

L2!

(
B1∑

i=0

αi −
B3+1∑

i=0

αi+B1−B3−1

)
≤ 0. (29)

We first consider the case where B3 = B1 + L2 − 1, so that System 3 has the same
number of spaces for jobs asSystem1. For this case, the left-hand side of (29) reduces to
(28)multiplied by negative one, which is less than zero. Thus, when B3 = B1+L2−1,
we have T1 < T3.

We next consider the case where B3 = B1, so that Systems 1 and 3 have the same
number of buffer spaces excluding the spaces for servers. For this case, the left-hand
side of (29) reduces to

∑L2−2
i=0 αi Li

2/ i !, which is positive. Hence, in this case, we have
T1 > T3.
System 2 versus System 3: From Eqs. (24) and (25), we find that T2 ≤ T3 if and only
if

B2∑

i=0

αi+B3+1−B2 + L1!αL1−1

LL1
1

L1−1∑

i=0

Li
1α

−i

i ! −
B3+1∑

i=0

αi ≤ 0. (30)

We first consider the case where B3 = B2 + L1 − 1, so that System 3 has the same
number of spaces for jobs as System 2. For this case, the left-hand side of (30) reduces
to
∑L1−2

i=0 (L1!/(LL1−i
1 i !)−1)αL1−1−i , which is less than zero because LL1−i

1 i ! > L1!
for all i = 0, 1, . . . , L1 − 2. Thus, when B3 = B2 + L1 − 1, we have T2 < T3.

We next consider the case where B3 = B2, so that Systems 2 and 3 have the same
number of buffer spaces excluding the spaces for servers. For this case, the left-hand
side of (30) reduces to L1!∑L1−2

i=0 Li−L1
1 αL1−1−i/ i ! > 0. Hence, in this case, we have

T2 > T3.
In order to complete the proof, we need to show that T0 is a non-decreasing function

of B0, which implies that Tj is a non-decreasing function of Bj for j = 1, 2, 3. (Our
literature search failed to find the exact monotonicity result in published work. For a
similar monotonicity result in the case of tandem lines with two or more stations each
having a single server, see [18].) From Eq. (22), we find that T0 with B0 + 1 buffers
is greater than equal to T0 with B0 buffers if and only if

(
L1−1∑

i=0

αL1−i Li
1

i ! −
L1−2∑

i=0

αL1−1−i Li
1

i !

)(
L2∑

i=0

Li
2α

i

i ! −
L2−1∑

i=0

Li
2α

i+1

i !

)
≥ 0. (31)

We know from the argument following (26) that the term in the second parentheses
above is positive. Furthermore, the term in the first parentheses in (31) reduces to

αL1 +
L1−1∑

i=1

αL1−i Li−1
1

i ! (L1 − i),

which is greater than zero. This concludes the proof. �	
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