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Abstract

For queueing systems with multiple customer types differing in service time distributions and

costs for waiting, it is known that giving priority to one type over others minimizes the long-run

average waiting costs when waiting is penalized linearly in time. However, when waiting costs

are nonlinear, which is typically a more reasonable depiction of reality, it is not clear whether

policies that ignore the type information such as the first-come-first-serve policy (FCFS) should

be replaced with type-based priority policies. To shed some light on to this problem, we study a

single-server queueing system with two types of customers under static queueing policies that use

information on customers’ types and order of arrival. Our main theorem ranks the type-based

priority policies and FCFS according to their long-run average waiting costs under nonlinear

cost functions. We then apply this result to polynomial cost functions and generate insights

into when prioritization is advantageous. For example, we find that when customers are similar

in terms of their service time distributions, then the parameter region where FCFS is more

preferable over type-based priority policies under quadratic costs increases with traffic intensity.

We also conduct a numerical study to compare the best static policy with a well-known dynamic

policy that requires information on the current waiting times of customers. We find that the

best static policy performs comparably with (sometimes even better than) this dynamic policy

except when the traffic is heavy and it is not clear which type should receive priority.

1 Introduction

Many service systems prioritize their customers based on customers’ characteristics such as ex-

pected service time and value to the system in addition to their arrival times to the system. For

example, patients arriving at the emergency department of a hospital are first triaged, i.e., assigned
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a criticality level, and prioritized based on their triage category and arrival order. Another example

is call centers, where customers who have premier membership status are given priority for order

of service. A natural framework for analyzing such systems has been through modeling them as

queueing systems and over the last sixty years or so there appeared numerous articles that studied

how customers in a queueing system should be prioritized.

Despite significant progress, however, this literature has important gaps from both academic and

practical point of view largely due to the assumptions imposed on the waiting costs for analytical

tractability. Specifically, an overwhelming majority of the articles assume that the cost of waiting

for a customer is a linear function of the customer’s waiting time, an assumption that is not likely to

hold for many systems. For example, the optimality of the well-known cµ rule has been established

under a variety of conditions but all under the restriction that waiting costs are linear (see our

literature review in Section 2). On the other hand, the work that considered the possibility of

nonlinear waiting costs imposed some other restrictions on the system such as the requirement that

the system be operating under heavy traffic and the waiting cost function being convex. More

importantly, the policies proposed (e.g., the generalized cµ rule, which is first proposed by Van

Mieghem (1995)) are somewhat sophisticated requiring the system to keep track of the arrival time

of each customer in the queue and having a complete knowledge of the waiting cost function, which

may pose a challenge in practice.

While prioritization is prevalent in practice, in many cases, the policies in place are not based

on careful statistical estimation of the waiting cost functions but mostly based on some rough

analysis of limited data, and the service providers’ past experience and beliefs about who needs the

service more urgently or whose long wait would be more detrimental for the system. For example,

prioritization of patients in emergency departments or in the aftermath of mass-casualty events

is very common in practice yet the precise nature of the effect of passage of time on the patient

survival, which can be seen as waiting cost, is not well understood (see Jenkins et al. (2008), Sacco

et al. (2005) and the discussion on survival probability functions in Sun et al. (2017)). Similarly, in

other settings like healthcare clinics and call centers, there is very limited work on the estimation of

waiting costs. Nevertheless, this does not stop providers from implementing prioritization policies

that they believe to be improving system performance. They also usually stick with simple policies

like classifying customers into two groups and prioritizing one group over the other.

Given the fact that waiting cost functions are not known precisely, choosing a simple prioriti-

zation policy (if one needs to be chosen) is reasonable. But the question remains as to whether
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prioritization makes sense in the first place. The theory supports prioritization among classes when

waiting costs are linear functions of time but what if the waiting costs are not linear? When is there

at least some justification for taking the risk of using prioritization between classes and thereby

possibly alienating customers rather than using a standard first-come-first-serve (FCFS) policy,

which is at least largely perceived to be fair? A provider who uses prioritization without knowing

the precise form of the waiting cost functions is in fact implicitly assuming a certain relationship

between the waiting cost functions for different classes. But what are these implicit assumptions?

One of the two main goals of this article is to provide some answers to these questions, which we

do by comparing the performance of FCFS with those of priority policies under cost functions that

are not necessarily linear.

The second goal of this article is to provide some managerial insights into the type of system

conditions that would favor prioritization policies over FCFS under nonlinear waiting costs. While

service providers might find it difficult to estimate the waiting cost functions precisely, they might

have a good sense of the general structure of the function (convex, concave, quadratic, etc.). Thus,

it would be useful to know, assuming that the cost functions have a particular structure (but not

knowing the functions precisely), whether any one of the policies would stand out by being the best

choice under a larger or more realistic set of cost parameter values than the others and whether the

policy that stands out depends on system conditions such as traffic load. For example, if a linear

cost model appears to be appropriate for one class but a quadratic cost function for the other class,

would any one of the policies stand out as more likely to be better than the others? Would the

answer depend on the traffic load on the system? How about the service time variability?

In the pursuit of the goals stated above, we analyze an M/G/1 queueing system with two

customer classes, where each type is characterized by a service time distribution and a waiting

cost function and the waiting cost function for at least one type is nonlinear. (Complete model

description is provided in Section 3.) We formally define our objective to be to determine the

best “static policy” that minimizes the long-run average cost. By a static policy, we mean a policy

that determines the order customers are taken into service using information only on customer type

identities and their rank with respect to the arrival times but not on the number of customers in the

system and their current waiting times. These policies include priority policies that give priority

to a certain type of customers and non-priority policies like FCFS.

We first provide our main result, which completely characterizes the best policy among the

three commonly used static policies, namely, F , PF1 and PF2, where F is short for FCFS and
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PFi denotes the type-based priority policy that prioritizes type i customers and employs FCFS

within each type for i = 1, 2, under general waiting cost functions (see Section 4). (For convex cost

functions, based on earlier results from the literature, we can show that it is sufficient to consider

only these three static policies to find the optimal static policy.) In Section 5, we use our main

theorem to provide a clearer characterization of the best policy when waiting cost functions are

polynomial, which leads to several managerial insights. For example, through this analysis, we find

that, if waiting cost functions are quadratic, unlike in the linear-cost case, the optimal static policy

depends on the traffic intensity and the proportion of each type in the customer population. We

also obtain results on how the optimal policy changes with this proportion and traffic intensity.

Finally, in Section 6, we present the results of a numerical study we conducted to observe how the

performance of the best static policy compares with the generalized cµ rule under quadratic cost

functions and to provide insights into when one should consider such a dynamic policy over the

simpler static policies. We summarize our conclusions in Section 7. The proofs of our analytical

results are provided in the Appendix. In the following, before we proceed with model description

and analysis, we first provide a brief literature review.

2 Literature review

Queueing systems where certain classes of customers have priority over others are called priority

queues. The study of priority queues dates back to Cobham (1954) who considered a single-server

Markovian queueing system (M/M/1) where customers belong to multiple priority classes and the

service is non-preemptive, i.e., the service of a customer is not preempted upon arrival of a customer

with higher priority. For such a system, Cobham (1954) derived expressions for the long-run average

waiting times in the queue for each priority class. This seminal work was followed by Miller (1960)

and Jaiswal (1968), who advanced the analysis of priority queues further, e.g., by providing Laplace-

Stieltjes transforms of the waiting time distributions for M/G/1 priority queues and considering

other priority mechanisms such as preemptive prioritization. When the waiting time of customers

is penalized linearly with time, Cox and Smith (1961) established the optimality of the well-known

“cµ rule,” which minimizes the long-run average waiting cost in an M/G/1 queue with multiple

priority classes. According to the cµ rule, customers with larger ciµi index are assigned higher

priority, where ci is the waiting cost per unit time and µi is the service rate for type i customers.

Following this seminal paper, the optimality of the cµ-type policies has been studied under various
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settings by Kakalik and Little (1971), Klimov (1974, 1979), Harrison (1975), Pinedo (1983), Nain

(1989), Argon and Ziya (2009), Budhiraja et al. (2014) among others, all under the assumption of

linear cost functions.

While this is not the first paper to consider nonlinear waiting costs in queueing systems, it would

be fair to say that the literature on the topic is scarce. Within this literature, Haji and Newell

(1971) showed that when waiting cost functions are increasing and convex, the optimal policy will

always serve customers of the same type according to the FCFS discipline. Later, Van Mieghem

(1995) proved that when waiting costs are convex in time, a generalized version of the cµ rule is

asymptotically optimal under heavy traffic, which was followed by a proof by Mandelbaum and

Stolyar (2004) that extended the heavy-traffic optimality of the generalized cµ rule to more general

settings. The generalized cµ rule is a dynamic policy that gives priority to the customer who has

the largest C ′i(t)µi value in the system at every service completion epoch, where Ci(t) is the cost

of holding a type i customer in the queue for t units of time and C ′i(t) is its first-order derivative.

Hence, to implement the generalized cµ rule, one needs to keep track of the waiting times of all

customers in the system and know the cost function precisely.

Other relevant work that study the optimal scheduling problem in priority queueing systems

under convex cost structures include Ansell et al. (2003), Glazebrook et al. (2003), and Bispo

(2013). Assuming that the holding cost is a function of the number of customers in the system,

these papers develop state-dependent (dynamic) heuristic policies for single-server queueing systems

as an alternative to the simpler generalized cµ rule. Gurvich and Whitt (2009) considered a multi-

server multi-class service system with convex delay costs that are functions of the queue length.

They introduced a queue-and-idleness-ratio policy and showed that this proposed policy would

reduce to the cµ rule under linear holding costs and to the generalized cµ rule under strictly

convex costs and other regularity conditions. Finally, Ata and Tongarlak (2013) and Larranaga

et al. (2015) studied the dynamic control of multi-class queueing systems with abandonments and

proposed state-dependent heuristic policies that would work under possibly nonlinear waiting costs.

3 Model description

Consider a single-server queueing system with two types of customers. Customers arrive to the

system according to a Poisson process with rate λ > 0, and an arriving customer belongs to type

i ∈ {1, 2} with probability pi > 0, where p1 +p2 = 1, independently of everything else in the system.
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Service times for type i ∈ {1, 2} customers are independent and identically distributed (i.i.d.) with

mean τi > 0 and second moment ξi > 0. We define ρi ≡ piλτi and ρ ≡ ρ1 + ρ2, which we call

the system load, and we assume that ρ < 1 for stability. Each type i customer incurs a waiting

cost Ci(t) when its waiting time in the queue is t, for t ≥ 0 and i = 1, 2. We assume that Ci(t) is

first-order differentiable and non-decreasing in t for fixed i.

For such a queueing system, we consider non-idling and non-preemptive queueing policies that

use information only on the type and arrival order of all customers in the system. These policies

are non-idling and non-preemptive in the sense that the server does not idle as long as there is a

customer in the system and that service of a customer who has been taken into service has to be

completed without any preemption before the server moves on to serving another customer. We

let Π denote the set of all such queueing policies.

For any policy π ∈ Π, define the long-run average cost as

Cπ ≡ lim
t→∞

∑2
i=1

∑ni(t)
k=1 Ci(V

π,x0
i,k )

t
(1)

(whenever the limit exists), where ni(t) is the number of type i customers that arrived by time t

and V π,x0
i,k is the waiting time of the kth arriving type i customer under policy π and initial state

x0. Our objective is to identify policies that provide the minimum long-run average waiting cost

Cπ in the policy set Π. Let W π
i denote the steady-state waiting time of a type i customer under

policy π. We show in the Appendix that the limit in (1) exists and satisfies

Cπ = λp1E
[
C1(W π

1 )
]

+ λp2E
[
C2(W π

2 )
]

(2)

if Assumption 1 holds for both i ∈ {1, 2}:

Assumption 1. For fixed i ∈ {1, 2} and π ∈ Π, E
[∣∣Ci(W π

i )
∣∣] <∞.

In Section 5, we show that Assumption 1 holds under some mild conditions when the waiting costs

are polynomial.
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4 Comparison of FCFS and type-based priority policies under

general cost structures

This section presents the main results of the paper, which provide a complete analytical answer

to the question we set out to investigate and generalize the classical cµ rule. The results are

somewhat technical in nature and thus their managerial implications may not be readily apparent.

The reader should note however that Section 5 builds on these results and provides more insightful

results under a variety of conditions.

Specifically, in this section, we compare three policies within Π, namely FCFS, PF1, and PF2,

which are of special interest due to their common use in practice. To further motivate our focus on

these policies, we start with a result that shows that it is sufficient to compare only FCFS, PF1,

and PF2 to find the optimal policy within Π if Ci(·) is a convex function (in the non-strict sense)

for both i = 1, 2.

For i ∈ {1, 2}, let ΠPi denote the set of non-idling and non-preemptive static policies that

prioritize type i customers over type 3 − i customers, where the order of service within each

type can be based on some specific ordering of arrival times of customers. For example, policies

that prioritize type i ∈ {1, 2} customers and apply FCFS or LCFS within each type are in ΠPi .

Let also ΠNP be the set of all the remaining policies in Π that do not use the type identity of

customers in determining the order of service but can use their rank in the queue. For example,

FCFS and last-come-last-serve (LCFS) are two policies in this set. Hence, by definition, we have

Π = ΠNP ∪ΠP1 ∪ΠP2 .

Proposition 1. If C1(t) and C2(t) are both convex functions, then

(a) CF ≤ Cπ for any π ∈ ΠNP;

(b) CPFi ≤ Cπ for any π ∈ ΠPi and fixed i ∈ {1, 2}.

Proposition 1 implies that when the cost functions for both types are convex, it is sufficient

to consider policies in the set {F, PF1, PF2} instead of the whole set Π. Parts (a) and (b) of

Proposition 1 follow directly from Theorem 2 in Vasicek (1977) and Theorem 1 in Haji and Newell

(1971), respectively.
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4.1 Definitions and lemmas

In order to compare CF , CPF1 , and CPF2 , we need several definitions and lemmas, which we provide

in this subsection.

Definition 1. (E.g., Shaked and Shanthikumar (2007)). Let X and Y be two random variables

with corresponding cumulative distribution functions FX(·) and FY (·). If FX(x) ≥ FY (x) for all

x ∈ (−∞,∞), then X is said to be smaller than Y in the usual stochastic ordering (denoted by

X ≤st Y ).

Definition 2. (Di Crescenzo, 1999). Let X and Y be two non-negative random variables with

X ≤st Y and E[X] < E[Y ] < ∞. Then, we write Z ≡ Ψ(X,Y ) to indicate that Z is a random

variable with probability density function

fZ(x) =
FX(x)− FY (x)

E[Y ]− E[X]
, x ≥ 0, (3)

where FX(·) and FY (·) are the cumulative distribution functions ofX and Y , respectively. Di Crescenzo

(1999) shows that fZ(·) is a probability density function.

Lemma 1. (Theorem 4.1 of Di Crescenzo (1999)) Let X and Y be two non-negative random

variables satisfying X ≤st Y and E[X] < E[Y ] < ∞, and let Z = Ψ(X,Y ). Let also g be

a measurable and differentiable function such that E[g(X)] and E[g(Y )] are finite, and let its

derivative g′ be measurable and Riemann-integrable on the interval [x, y] for all 0 ≤ x ≤ y. Then,

E
[
g′(Z)

]
is finite and

E[g(Y )]− E[g(X)] = E[g′(Z)]
(
E[Y ]− E[X]

)
.

Lemma 1 presents a probabilistic analogue of the mean value theorem, where Z is a random

variable that can be considered as the “mean value” of X and Y . However, unlike for the (deter-

ministic) mean value theorem, Z does not change with the function g, and Z = Ψ(X,Y ) is not

necessarily ordered (in some stochastic sense) between X and Y . For example, when X and Y are

exponential random variables with distinct rates, it can be shown that Z =st X + Y (see Example

3.1 in Di Crescenzo (1999)).

We will use Lemma 1 in several of our results including our main result that compares CF ,

CPF1 , and CPF2 . Before we present this result, we need two more lemmas for the comparison of

WF
i , WPFi

i , and WPFi
3−i , for i = 1, 2.
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Lemma 2. (E.g., Gross et al. (2008) and Miller (1960)) For an M/G/1 queueing system, the

expected steady-state waiting times under FCFS and PFi are given as follows:

E[WF ] =
λξ̄

2(1− ρ)
, E[WPFi

i ] =
λξ̄

2(1− ρi)
, E[WPFi

3−i ] =
λξ̄

2(1− ρi)(1− ρ)
,

where ξ̄ ≡ p1ξ1 + p2ξ2, and we drop the subscript in WF
i since the distribution of WF does not

depend on i.

Lemma 3. For fixed i ∈ {1, 2}, we have WPFi
i ≤st WF ≤st WPFi

3−i .

The order of W
PFj
i and WF for i, j ∈ {1, 2}, given in Lemma 3 and proved in the Appendix,

makes intuitive sense. The steady-state waiting times under FCFS are stochastically less than

those for the non-priority type under a type-based priority policy but greater than those for the

prioritized type. Lemma 3 specifies a type of stochastic ordering between these three steady-state

random variables.

Based on Lemmas 2 and 3, for i ∈ {1, 2}, we define the following two random variables:

UPFii ≡ Ψ(WPFi
i ,WF ) and UPFi3−i ≡ Ψ(WF ,WPFi

3−i ).

Note that UPFij is well defined for i, j ∈ {1, 2} because WPFi
i ≤st WF ≤st WPF3−i

i according to

Lemma 3, and when ρ < 1 and pi > 0, we have E
[
WPFi
i

]
< E

[
WF

]
< E

[
W

PF3−i
i

]
< ∞, for

i ∈ {1, 2} by Lemma 2.

4.2 Main results

Our main result, namely, Theorem 1, provides necessary and sufficient conditions for the comparison

of FCFS, PF1, and PF2 under general cost structures.

Theorem 1. Suppose that Assumption 1 holds for i ∈ {1, 2} and π ∈ {F, PF1, PF2}. Then, we

have

(a) CF ≤ CPFi, for i ∈ {1, 2}, if and only if ai ≤ bi, where

ai ≡
E
[
C ′i(U

PFi
i )

]
τi

, bi ≡
E
[
C ′3−i(U

PFi
3−i )

]
τ3−i

; and (4)

(b) CPF1 ≤ CPF2 if and only if (1− ρ1)(a2 − b2) ≤ (1− ρ2)(a1 − b1).
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In an immediate corollary to Theorem 1 we provide necessary and sufficient conditions for the

optimality of FCFS, PF1, and PF2 within the set of these three policies.

Corollary 1. Suppose that Assumption 1 holds for i ∈ {1, 2} and π ∈ {F, PF1, PF2}.

(a) If a1 ≤ b1 and a2 ≤ b2, then CF ≤ CPF1 and CF ≤ CPF2.

(b) For fixed i ∈ {1, 2}, if ai ≥ bi and (1− ρ3−i)(ai − bi) ≥ (1− ρi)(a3−i − b3−i), then CPFi ≤ CF

and CPFi ≤ CPF3−i.

The conditions in Theorem 1 and Corollary 1 require computation of ai and bi for i ∈ {1, 2}. As

long as precise expressions for the cost functions Ci(·) are known, it is not difficult to numerically

determine ai and bi and thus identify which one of the three policies, F , PF1, and PF2 performs

best. Furthermore under certain assumptions on the structure of the waiting cost functions, it

might be possible to come up with closed-form expressions for ai and bi or develop precise methods

for computing them as we demonstrate for polynomial functions in Section 5.

In order to compute ai and bi in Theorem 1 and Corollary 1, we need to obtain E
[
C ′i(U

PFj
i )

]
for i, j ∈ {1, 2}. In certain situations, the cost function may be simple for one type and complicated

for the other. For example, it may be the case that the cost function for type 2 customers is linear

or quadratic, and the cost function for type 1 customers has a more complex structure. In this case,

we can use the next two results to order CF , CPF1 , and CPF2 without computing E
[
C ′1(U

PFj
1 )

]
but by computing E

[
C ′2(U

PFj
i )

]
for i, j ∈ {1, 2}.

Corollary 2. Suppose that Assumption 1 holds for i ∈ {1, 2} and π ∈ {F, PF1, PF2}.

(a) If C ′1(t) ≥ τ1 max{a2, b1} for all t ≥ 0, then CPF1 ≤ CF ≤ CPF2.

(b) If C ′1(t) ≤ τ1 min{a2, b1} for all t ≥ 0, then CPF2 ≤ CF ≤ CPF1.

(c) If τ1a2 ≤ C ′1(t) ≤ τ1b1 for all t ≥ 0, then CF ≤ CPF1 and CF ≤ CPF2.

Corollary 3. Suppose that Assumption 1 holds for i ∈ {1, 2} and π ∈ {F, PF1, PF2}. Assuming

E[C ′2(UPF2
1 )] 6= 0 and E[C ′2(UPF1

1 )] 6= 0, define

α ≡ τ1E[C ′2(UPF2
2 )]

τ2E[C ′2(UPF2
1 )]

and β ≡ τ1E[C ′2(UPF1
2 )]

τ2E[C ′2(UPF1
1 )]

.

(a) If C ′1(t) ≥ max{α, β}C ′2(t) for all t ≥ 0, then CPF1 ≤ CF ≤ CPF2.
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(b) If C ′1(t) ≤ min{α, β}C ′2(t) for all t ≥ 0, then CPF2 ≤ CF ≤ CPF1.

(c) If αC ′2(t) ≤ C ′1(t) ≤ βC ′2(t) for all t ≥ 0, then CF ≤ CPF1 and CF ≤ CPF2.

(d) If service times for all customers are i.i.d. and C2(·) is convex, then α ≤ 1 ≤ β.

Corollary 2 compares C ′1(t) with two fixed quantities, namely, τ1a2 and τ1b1, for all t ≥ 0.

Hence, C ′1(t) has to be bounded from either above or below (e.g., when C1(t) is concave) for the

conditions of the corollary to hold. On the other hand, in Corollary 3, we compare C ′1(t) with

two time-varying quantities, αC ′2(t) and βC ′2(t), and hence C ′1(t) does not need to be bounded.

However, in Corollary 3, we require E
[
C ′2(UPFi1 )

]
for i ∈ {1, 2} to be non-zero, which is satisfied

when C2(·) is a strictly increasing function. When C ′2(t) is a constant, i.e., C2(t) is linear, it can be

shown that τ1a2 = τ1b1 = αC ′2(t) = βC ′2(t), and hence, these two corollaries reduce to one another.

We will demonstrate how these two corollaries can be applied when cost functions are polynomial

and how they generalize the cµ rule in Section 5.

5 Comparison of FCFS and type-based priority policies for poly-

nomial cost functions

In this section, we focus on the case where the cost function for at least one type is polynomial. In

particular, suppose that for some i ∈ {1, 2},

Ci(t) =

j(i)∑
l=1

hl(i)t
l, (5)

where j(i) < ∞ is the degree of the polynomial function Ci(t), and hl(i) are some real numbers

such that C ′i(t) ≥ 0 for all t ≥ 0. We first provide conditions under which Assumption 1 holds for

type i customers that have a polynomial cost function.

Proposition 2. For type i ∈ {1, 2} with Ci(t) in the form of (5), if ρ < 1 and the first j(i) + 1

moments of service times for both types of customers are finite, then E[(W π
i )l] < ∞ for l =

1, 2, . . . , j(i) and π ∈ {F, PF1, PF2}, and hence, Assumption 1 holds for type i customers under

policy π ∈ {F, PF1, PF2}.

The condition on the moments of service times in Proposition 2 holds for many commonly used

distributions such as exponential, gamma, weibull, and lognormal. In the remainder of this section,
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we assume that this condition holds and hence Assumption 1 holds for customers with polynomial

cost functions under ρ < 1.

In order to apply Theorem 1 and Corollaries 1, 2, and 3 to the polynomial case, we need to

compute E
[
C ′i(U

PFm
k )

]
for some i, k,m ∈ {1, 2}, where

E
[
C ′i(U

PFm
k )

]
=

j(i)∑
l=1

lhl(i)E

[(
UPFmk

)l−1
]
. (6)

Here, E

[(
UPFmk

)l−1
]

for l = 1, 2, . . . , j(i) can be computed by the expression

E

[(
UPFmk

)l−1
]

=
E
[
(WF )l

]
− E

[
(WPFm

k )l
]

l
(
E[WF ]− E[WPFm

k ]
) , (7)

which can be obtained by letting g(x) = xl/l in Lemma 1. To demonstrate how Theorem 1 and

Corollaries 1, 2, and 3 can be used and to gain insights, in the remainder of this section, we focus

on polynomial cost functions with a degree of at most two.

5.1 Quadratic cost functions for both customer types

Suppose that Ci(t) = kit
2 + hit, where ki, hi ≥ 0 and i ∈ {1, 2}. Let ζi denote the third moment of

the service times for type i ∈ {1, 2} and ζ̄ ≡ p1ζ1 + p2ζ2. Then, Theorem 1 leads to the following

proposition that completely characterizes the order of PF1, PF2, and FCFS for the case with

quadratic cost functions.

Proposition 3. For quadratic cost functions, the best policy among PF1, PF2, and FCFS is

characterized as follows: if for some i = 1, 2, we have ai > bi, where

ai =
ki
τi

[
2ζ̄

3ξ̄
+

λξ̄

1− ρ
+

λpiξi
1− ρi

+
ξ3−i
τ3−i

]
+
hi
τi
, (8)

bi =
k3−i
τ3−i

[
2ζ̄

3ξ̄

(
1 +

1

1− ρi

)
+

λξ̄

1− ρ

(
1 +

1

1− ρi

)
+

ξi
τi(1− ρi)2

]
+
h3−i
τ3−i

, (9)

then PFi is the best; and otherwise, i.e., if a1 ≤ b1 and a2 ≤ b2, then FCFS is the best.

Proposition 3 is a generalization of the classical cµ rule to the quadratic cost setting with

possibly the most important difference being that FCFS can now in fact be better than prioritizing

either type. To better understand the relation with the cµ rule, note that Proposition 3 implies
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that PFi is the best among PF1, PF2, and FCFS, if and only if

ki
τi
≥

k3−i
τ3−i

[
2−ρi
1−ρi

(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λpiξi

1−ρi

)
+ ξi

τi

]
+ h3−i

τ3−i
− hi

τi[
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λpiξi

1−ρi + ξ3−i
τ3−i

] . (10)

One can then recover the cµ rule by setting k1 = k2 = 0 in (10).

To gain further insights, we next consider the case where h1/τ1 = h2/τ2, e.g., when Ci(t) = kit
2

for i ∈ {1, 2}, in the remainder of this subsection. (Argon et al. (2009) and Ata and Tongarlak

(2013) studied similar cost structures.) Then, Proposition 3 leads to the following corollary:

Corollary 4. For quadratic cost functions, when h1/τ1 = h2/τ2 (e.g., when h1 = h2 = 0), the best

policy among PF1, PF2, and FCFS is characterized as follows: PF2 is the best if k1/k2 < Aτ1/τ2;

PF1 is the best if k1/k2 > Bτ1/τ2; and FCFS is the best if Aτ1/τ2 ≤ k1/k2 ≤ Bτ1/τ2, where

A ≡
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp2ξ2

1−ρ2 + ξ1
τ1

2−ρ2
1−ρ2

(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp2ξ2

1−ρ2

)
+ ξ2

τ2

<

2−ρ1
1−ρ1

(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp1ξ1

1−ρ1

)
+ ξ1

τ1

2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp1ξ1

1−ρ1 + ξ2
τ2

≡ B.

Corollary 4 completely characterizes the best policy among FCFS, PF1, and PF2 for quadratic

cost functions with h1/τ1 = h2/τ2 (e.g., when h1 = h2 = 0). In particular, it states that PF1 is

the best if k1/k2 is sufficiently large, PF2 is the best if k1/k2 is sufficiently small, and FCFS is the

best if k1/k2 is somewhere in between.

Corollary 4 is very useful if the precise values of k1 and k2 are known. But what if the service

provider has reason to believe that quadratic functions would accurately capture the waiting costs

but cannot determine k1 and k2 precisely? Of course, in that case, it is impossible to know for sure

which policy would be better but one can compare these policies for a range of values for k1/k2

(rather than one specific value) and for each policy observe how large the range of k1/k2 values

that favor that policy over the others is. One would mainly pay attention to plausible values for

k1/k2 but within those plausible values, the larger the k1/k2 interval over which a particular policy

is better than the others the more confident one would be for choosing that policy over the others

when it comes to implementation. The service provider could also investigate how the k1/k2 interval

over which each policy is better than the others changes with respect to other system parameters

like the arrival rate. Such an analysis would help the provider identify system conditions under

which one type of policy would be favored over the others and potentially be more confident about

the policy choices particularly when it comes to deciding whether to follow the standard FCFS

13



scheme or go with prioritization with respect to customer types. To that end, we next look at some

numerical examples, illustrate how such an analysis can be carried out, and proceed with some

analytical results that provide support to some of our observations.

Figure 1 provides plots for four numerical examples that demonstrate how the best policy can

be determined using Corollary 4 and how the regions of optimality change with ρ (or equivalently

with λ). From the figure, we can observe that the region where FCFS is the best policy enlarges

as λ increases. This suggests that given the uncertainty around the true value of k1/k2, higher

arrival rates make it increasingly more likely for type-based priority policies to perform worse than

the standard FCFS policy. One should note however that while we can observe that both A and

B monotonically change with λ, they are not necessarily increasing or decreasing in all cases. We

next prove this monotonicity property and provide necessary and sufficient conditions under which

A and B increase or decrease with respect to λ.

Figure 1: Regions of optimality for FCFS, PF1, and PF2 as a function of ρ (or equivalently λ)
under quadratic waiting costs with h1/τ1 = h2/τ2 and exponential service times.
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Proposition 4. (a) A decreases in λ if and only if

ξ2

τ2
− (2− ρ2)ξ1

(1− ρ2)τ1
<

p2τ2
(1−ρ2)2

(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp2ξ2

1−ρ2

)(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp2ξ2

1−ρ2 + ξ1
τ1

)
ξ̄

(1−ρ)2
+ p2ξ2

(1−ρ2)2

. (11)

(b) B increases in λ if and only if

ξ1

τ1
− (2− ρ1)ξ2

(1− ρ1)τ2
<

p1τ1
(1−ρ1)2

(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp1ξ1

1−ρ1

)(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp1ξ1

1−ρ1 + ξ2
τ2

)
ξ̄

(1−ρ)2
+ p1ξ1

(1−ρ1)2

. (12)

(c) As λ→ 1/τ̄ , where τ̄ ≡ p1τ1 + p2τ2, we have A→ p1τ1
2p1τ1+p2τ2

and B → p1τ1+2p2τ2
p2τ2

.

Parts (a) and (b) of Proposition 4 provide necessary and sufficient conditions under which the

thresholds for the optimality of the three policies (see Corollary 4) monotonically change with λ.

One can obtain a simpler sufficient condition by noting that the right-hand sides of (11) and (12)

are both nonnegative: if ξ1
τ1
> ξ2(1−ρ2)

τ2(2−ρ2) (which holds if ξ1
τ1
/ ξ2τ2 > 1/2), then A decreases in λ and if

ξ1
τ1
< (2−ρ1)ξ2

(1−ρ1)τ2
(which holds if ξ1

τ1
/ ξ2τ2 < 2), then B increases in λ. This means that if ξi/τi values for

the two customer types are relatively close to each other, specifically, one is not more than twice

as large as the other, then the region where FCFS is the best gets larger while the regions for the

type-based priority policies get smaller suggesting that higher arrival rates increasingly favor FCFS

over the prioritization policies.

Note also that as p2 → 0, the opposite of (11) will hold if and only if ξ1
τ1
/ ξ2τ2 < 1/2, in which

case PF2 is preferred for a larger range of values of k1/k2 as λ increases. Similarly, from (12), we

find that B decreases in λ when p1 → 0 and ξ1
τ1
/ ξ2τ2 > 2, and thus PF1 is preferred for a larger

range of values of k1/k2 as λ increases. Thus, we can conclude that if the proportion of one type

of customers is sufficiently small, but the ratio ξi/τi for the same type is sufficiently large (at least

twice as large), then prioritizing that type becomes more preferable under a larger set of k1/k2

values and thus more likely to be the right choice as λ increases.

When interpreting these findings, it would be useful to note what the ratio ξi/τi represents.

For example, for fixed τi’s, a higher ξi would imply a higher variance. Hence, if the mean and

variance for service times are similar for the two types, then higher arrival rates increasingly favor

FCFS over type-based priority policies. On the other hand, if the mean service time for the two

types are similar but the variance is much higher for one of the types, then higher arrival rates will

increasingly favor giving priority to the type with higher variance if the proportion of that type is
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sufficiently small.

Proposition 4(c) provides the limiting values of A and B under a heavy traffic condition and

thus can be used to precisely describe the regions under which each one of the three policies would

perform better than the others when the system is heavily loaded. Noting the fact that A converges

to a value that is less than 1 and B converges to a value that is larger than 1, we can also conclude

that FCFS should be preferred in heavy traffic regardless of the service time distribution of either

type if k1/τ1 and k2/τ2 are similar.

We next study the effects of p1 (and hence p2) on the comparison of FCFS, PF1 and PF2. We

first provide four numerical examples in Figure 2. We notice from Figure 2 that A and B do not

change monotonically in p1 except when the service times for all customers are i.i.d. In our next

result, we prove monotonicity of A and B in p1 under i.i.d. service times, and also provide the

limiting values of A and B in heavy traffic and as p1 approaches 0 or 1.

Figure 2: Regions of optimality for FCFS, PF1, and PF2 as a function of p1 under quadratic
waiting costs with h1/τ1 = h2/τ2 and exponential service times.

Proposition 5. (a) When service times are i.i.d. for all customers, A and B both increase in p1

(and hence decrease in p2).
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(b) lim
λ→1/τ̄ , p1→0

A = 0, lim
λ→1/τ̄ , p1→0

B = 2, lim
λ→1/τ̄ , p1→1

A = 1
2 , lim

λ→1/τ̄ , p1→1
B =∞.

Proposition 5(a) indicates that if service times are i.i.d., as the proportion of one type increases,

giving priority to that type becomes preferable for a smaller range of k1/k2 values while prioritizing

the other type is preferred for a wider range (see also the top two plots in Figure 2). This is

because, unlike the case where waiting costs are linear, under quadratic waiting costs, long waits

are penalized very heavily and as the proportion of higher priority type increases, the waiting

cost incurred by the lower priority customers increases significantly. (Nevertheless, as we can see

from the bottom two plots in Figure 2, this intuition does not work when service times are not

identically distributed for all customers since in that case the type given priority also influences

the rate at which waiting customers progress in the queue.) Similarly, Proposition 5(b) implies

that under heavy traffic, type i customers should not be prioritized if the proportion of this type

is close to one; instead, the other type, i.e., type 3− i, should be served first if k3−i/τ3−i > 2ki/τi,

and otherwise FCFS should be applied. In other words, when the proportion of one customer

significantly dominates the other, under heavy traffic, giving priority can only be justified for the

class with the small proportion and that justification requires that its ki/τi is at least twice as large

as that of the other type. Otherwise, it is better to use FCFS.

Finally, we compare the values of A and B under two different service time distributions with

the same means. Let Aexp[Bexp] and Adet[Bdet] denote the values of A[B] under exponential and

deterministic service times, respectively.

Proposition 6. (a) Aexp ≤ Adet if and only if τ2 ≤ τ1(2− ρ2)/(1− ρ2).

(b) Bexp ≥ Bdet if and only if τ2 ≥ τ1(1− ρ1)/(2− ρ1).

Proposition 6 implies that if τ1
τ2
∈
(

1−ρ2
2−ρ2 ,

2−ρ1
1−ρ1

)
, then Aexp ≤ Adet < Bdet ≤ Bexp, and hence,

when the mean service times are not significantly different for the two types, FCFS is preferable for

a wider range of values of k1/k2 under exponential service times than under deterministic service

times. This suggests that when the two types are not too different in terms of mean service times,

higher service time variability makes FCFS a better choice under a larger range of waiting cost

scenarios. When service times have higher variance, waiting times will also have higher variance

regardless of whether FCFS or a type-based priority policy is in place. Nevertheless, due to the

convexity of the waiting cost functions, the impact will be larger on the type-based priority policies

because of the longer waits experienced by at least some of the lower priority customers.
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It is important to note however that if mean service times are sufficiently different between the

two types, lower variability might make prioritizing the type with smaller mean service time more

desirable. Specifically, Proposition 6 also says that if one type is sufficiently faster to serve in the

mean sense, say, τ1/τ2 > (2− ρ1)/(1− ρ1), then Aexp ≤ Adet and Bexp ≤ Bdet, which implies that

under deterministic service times, PF2 (prioritizing the faster type) is preferred for a wider range

of values of k1/k2, and PF1 (prioritizing the slower type) is preferred for a narrower range of values

of k1/k2 than that under exponential service times.

5.2 Minimizing the variance of waiting times in steady state

In this section, we discuss how the results from Section 5.1 can be used to derive insights into

the problem of minimizing the variance of the steady-state waiting times when the mean service

times for all customers are the same but the variance and higher moments are possibly different.

Minimization of variance of steady-state waiting times has been of interest especially in the context

of fairness in queueing systems. In particular, Kingman (1962), Avi-Itzhak and Levy (2004), and

references therein use variance of waiting times as a measure of fairness in a queueing system in

that a policy that has a smaller variance of waiting times is regarded as a fairer policy. Kingman

(1962) and Vasicek (1977) prove that FCFS minimizes the variance of waiting times among all

non-idling queueing disciplines and thus is the “fairest” discipline for various queueing systems but

under the assumption that customers are indistinguishable, i.e., there is a single class of customers.

Avi-Itzhak and Levy (2004) propose a new fairness measure that computes the expected number of

positions that a job is pushed ahead or backwards under a policy compared to FCFS and conclude

that for G/G/c queues with c parallel servers, variance of the steady-state waiting time can be used

as an appropriate measure of fairness. To the best of our knowledge, unlike this paper, all earlier

work on minimization of variance of waiting times considered customers belonging to a single class.

We next use our results on quadratic cost functions to study the variance minimization problem

for an M/G/1 queue with two classes of customers with equal mean service times but distinct

service-time distributions.

For identical mean service times for all customers, i.e., τ1 = τ2, the steady-state mean wait-

ing times are the same under FCFS, PF1, and PF2, as can be verified using Lemma 2. Hence,

minimizing the variance of the steady-state waiting times within Π is equivalent to minimizing the

second moment of the steady-state waiting times, which corresponds to letting C1(t) = C2(t) = t2

for t ≥ 0 in our formulation. Corollary 4 then immediately yields the following result.
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Corollary 5. When all customers have equal mean service times, the variance of the steady-state

waiting times among all policies in Π is minimized by PF2 if

(p1ξ1 + p2ξ2)

[(
1− ρ(1− ρ2)

1− ρ

)
ξ1 −

(
1− ρ2 +

ρ2

1− ρ
+

ρ2

1− ρ2

)
ξ2

]
>

2τ̄ ζ̄

3
; (13)

by PF1 if

(p1ξ1 + p2ξ2)

[(
1− ρ(1− ρ1)

1− ρ

)
ξ2 −

(
1− ρ1 +

ρ1

1− ρ
+

ρ1

1− ρ1

)
ξ1

]
>

2τ̄ ζ̄

3
; (14)

and by FCFS otherwise.

Corollary 5 appears to be somewhat technical at first but a closer examination of Conditions

(13) and (14) after some algebraic manipulations leads to some interesting insights into the problem

of minimizing the steady-state waiting time variance:

• When ρ ≥
√

2/(1 +
√

2) and (1 − ρ)2/ρ2 ≤ p1 ≤ 1 − (1 − ρ)2/ρ2, the left-hand sides of both

(13) and (14) are non-positive, and hence, regardless of the service time distributions, FCFS

provides the smallest variance for the steady-state waiting times. In other words, when the

traffic intensity is sufficiently large and neither type is dominant in numbers, then FCFS is

better than all other static policies. Furthermore, as ρ increases, the need for balance between

p1 and p2 for FCFS to be better than the other two policies diminishes and becomes completely

unnecessary as ρ approaches one. This is consistent with the asymptotic optimality of the

generalized cµ rule, which reduces to FCFS when mean service times are the same for both

types and the cost functions are given by C1(t) = C2(t) = t2 for t ≥ 0.

• When ρ ≥
√

2/(1 +
√

2) and pi ≤ (1− ρ)2/ρ2 for some type i, then PF3−i [FCFS] is the best

static policy if the service-time variance of type 3 − i is sufficiently small [large]. In other

words, when the traffic intensity and the proportion of one type are sufficiently large, then

prioritizing the type with a larger proportion of demand is the best if its service time variance

is small enough; otherwise, it is best to use FCFS.

• When ρ <
√

2/(1+
√

2), then the type with a sufficiently smaller service-time variance should

be prioritized. If the service time variances are not too different (e.g., ξ1 = ξ2), then FCFS

becomes the best static policy even if the traffic intensity is not large. This generalizes the

earlier work by Kingman (1962) and Vasicek (1977) that showed that the variance for waiting

times is minimized by the FCFS policy under i.i.d. service times for all customers.
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5.3 Quadratic cost for one type and general cost for the other type

Suppose one type of customers has a quadratic cost function (say, C2(t) = k2t
2 +h2t for h2, k2 ≥ 0),

and the other type has a general cost function that is not necessarily in quadratic form. In this

section, we will demonstrate how Corollaries 2 and 3 can be used for this case assuming that

Assumption 1 holds for both types.

We first focus on Corollary 2. When C2(t) is a quadratic function, a2 and b1 are given by (8)

and (9), respectively, and hence we have a2 < b1 (see the proof of Proposition 3 in the Appendix).

Therefore, in Corollary 2, we can replace max{a2, b1} with b1 and min{a2, b1} with a2. Furthermore,

since a2 < b1, we know that the interval (τ1a2, τ1b1) is not necessarily an empty set and hence part

(c) of Corollary 2 could be applicable. Consequently, Corollary 2 implies that if the smallest

value the derivative of C1(t) takes is at least τ1b1, then type 1 customers should be prioritized;

if the largest value the derivative of C1(t) takes is at most τ1a2, then type 2 customers should

be prioritized; and if the derivative of C1(t) lies between τ1a2 and τ1b1 at all times, then FCFS

should be employed. Furthermore, by Equations (8) and (9), we notice that ai, bi and the difference

b3−i − ai all increase in λ for i ∈ {1, 2} since ρi, ρ3−i, 1/(1 − ρ), 1/(1 − ρi) and 1/(1 − ρ3−i) all

increase in λ. This implies that the bounds τ1a2 and τ1b1, and the length of the interval (τ1a2, τ1b1)

are all increasing as λ becomes larger. Moreover, both a2 and b1 go to infinity as λ approaches

τ̄−1. Combining this with Corollary 2 leads to an important conclusion: if the derivative of the

cost function for one type is bounded from above and the other type has a quadratic cost function,

then it is best to prioritize the type with quadratic cost under heavy traffic no matter what the

service time and cost parameters are. To better understand these implications and where they can

be useful, it will be helpful to consider a few examples:

Example 1. (i) If C1(t) = h1t for t ≥ 0, where h1 is a finite and positive constant, then C ′1(t) =

h1 is bounded. Hence, Corollary 2 leads to a complete characterization of the best policy

among FCFS, PF1, and PF2 in this case: PF1 is preferred if h1 ≥ τ1b1, PF2 is preferred

if h1 ≤ τ1a2, and FCFS is preferred otherwise. Note also that as λ increases, the range of

h1 values where PF1 [PF2] is preferred shrinks [enlarges] and the range for which FCFS is

preferred shifts up and becomes wider. Furthermore, since a2 → ∞ as λ → 1/τ̄ , PF2 is

preferred for any finite h1 under heavy traffic. This means that when type 1 customers have

linear and type 2 customers have quadratic waiting costs, prioritizing type 2 customers will

reduce the long-run average cost in heavy traffic no matter what the cost and service time
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parameters are.

(ii) If C1(t) = h1 ln(t+ 1) for t ≥ 0 and positive constant h1, we have C ′1(t) ≤ h1 for all t ≥ 0, and

hence CPF2 is the smallest if h1 ≤ τ1a2. As λ → 1/τ̄ , the bound τ1a2 goes to infinity, which

indicates that PF2 is the best for any h1 under heavy traffic.

(iii) If C1(t) = k1(eh1t − 1) for t ≥ 0 and positive constants k1 and h1, we have C ′1(t) ≥ k1h1 for

all t ≥ 0, and hence CPF1 is the smallest if k1h1 ≥ τ1b1. As λ→ 1/τ̄ , the bound τ1b1 goes to

infinity, and hence in this case we do not obtain a sufficient condition for PF1 to be the best

policy.

We next consider Corollary 3 under the case where the waiting cost for type 2 customers is a

quadratic function. To demonstrate how Corollary 3 could be used, we first applied it to functions

given in Example 1 and also identified its differences from Corollary 2. In particular, we showed

that both Corollaries 2 and 3 could be useful in different situations. The interested reader is referred

to Example 3 in the Appendix. We then obtained the following result that tells us more about how

the optimality regions for the three policies under comparison change in the case where the cost

for one type is quadratic but the other is general.

Proposition 7. When C2(t) is a quadratic function, α and β in Corollary 3 are given by

α =

(
τ1

τ2

) k2

(
2ζ̄
3ξ̄

+ λξ̄(2−ρ−ρ2)
(1−ρ)(1−ρ2) + λp1ξ1(1−ρ)

ρ1(1−ρ2)

)
+ h2

k2

(
2ζ̄(2−ρ2)

3ξ̄(1−ρ2)
+ λξ̄(2−ρ2)

(1−ρ)(1−ρ2) + λp2ξ2
ρ2(1−ρ2)2

)
+ h2

,

β =

(
τ1

τ2

) k2

(
2ζ̄(2−ρ1)

3ξ̄(1−ρ1)
+ λξ̄(2−ρ1)

(1−ρ)(1−ρ1) + λp1ξ1
ρ1(1−ρ1)2

)
+ h2

k2

(
2ζ̄
3ξ̄

+ λξ̄(2−ρ−ρ1)
(1−ρ)(1−ρ1) + λp2ξ2(1−ρ)

ρ2(1−ρ1)

)
+ h2

.

Furthermore, we have the following:

(a) α < β.

(b) If (11) holds, then α decreases in λ, and if (12) holds, then β increases in λ. (When h2 = 0,

conditions (11) and (12) are also necessary for the respective results.) Moreover,

lim
λ→1/τ̄

α =

(
τ1

τ2

)(
p1τ1

2p1τ1 + p2τ2

)
, lim
λ→1/τ̄

β =

(
τ1

τ2

)(
p1τ1 + 2p2τ2

p2τ2

)
.

(c) When service times are i.i.d. for all customers, α and β both increase in p1 (and hence decrease

in p2).
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By Proposition 7(a), we can replace max{α, β} with β and min{α, β} with α in Corollary 3. In

addition, when service times are i.i.d. (so that both (11) and (12) hold), Proposition 7(b) implies

that as λ increases α decreases and β increases which means that when the system becomes more

congested, the region where FCFS is preferred becomes larger. This observation is in agreement

with our conclusions for the case where waiting cost functions for both customer types are quadratic,

and thus strengthens the idea that FCFS becomes increasingly more favorable with higher arrival

rates under a large class of waiting cost functions.

5.4 Linear cost for one type and general cost for the other type

Suppose that one type of customers has a linear cost function (say, C2(t) = h2t for t ≥ 0 and

h2 > 0). Then, we have a2 = b1 = h2/τ2 and α = β = τ1/τ2, which reduces Corollaries 2 and 3 to

the same result:

(a) If C ′1(t) ≥ h2τ1
τ2

for all t ≥ 0, then CPF1 ≤ CF ≤ CPF2 .

(b) If C ′1(t) ≤ h2τ1
τ2

for all t ≥ 0, then CPF2 ≤ CF ≤ CPF1 .

We next discuss what this result implies for functions given in Example 1. For notational simplicity,

let µi = 1/τi for i ∈ {1, 2}.

Example 2. (i) When C1(t) = h1t for t ≥ 0 and positive constant h1, PF1 is preferred if

h1µ1 ≥ h2µ2 and PF2 is preferred otherwise. This is the well-known cµ rule, which indicates

that under linear cost functions we should give priority to the type with the larger cµ value

(in our notation, the larger hµ value), see, e.g., Cox and Smith (1961).

(ii) When C1(t) = h1 ln(t+ 1) for t ≥ 0 and positive constant h1, PF2 is the best if h1µ1 ≤ h2µ2.

(iii) When C1(t) = k1(eh1t − 1) for t ≥ 0 and positive constants k1 and h1, PF1 is the best if

k1h1µ1 ≥ h2µ2.

Based on Example 2, one might conjecture that FCFS cannot be the best policy if the cost

function for one type is linear. However, this is not true as we have seen in Example 1(i) that

FCFS can be better than the type-based priority policies if the waiting cost for one type is linear

and that for the other type is quadratic (since a2 is strictly less than b1 by (27)).
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6 Numerical study

The main objective of this section is to investigate how the performances of state-independent

policies FCFS, PF1, and PF2 compare with that of the state-dependent, more complex alternative,

namely the generalized cµ (G-cµ) rule. In particular, we aim to identify conditions under which it

may be worthwhile to use the G-cµ rule as opposed to the simpler alternatives and also the condi-

tions under which the additional complexity of the G-cµ rule does not seem to bring much benefit.

Although G-cµ rule is not necessarily an optimal dynamic policy, it is shown to be asymptotically

optimal for convex cost functions under heavy traffic (Van Mieghem, 1995).

In our experimental setup, we considered cost functions of the form C1(t) = kt2 and C2(t) = t2,

t ≥ 0, for different values of k > 0. Service times for type i ∈ {1, 2} customers are exponentially

distributed with mean τi, where τ2 is fixed at one unit of time. We consider 81 different scenarios

corresponding to all combinations of ρ ∈ {0.3, 0.7, 0.9}, p1 ∈ {0.1, 0.5, 0.9}, τ1 ∈ {0.2, 1, 5}, and

k ∈ {0.1, 0.9, 5}. In order to find the optimal static policy within Π (denoted by π∗) for these

scenarios, we computed the corresponding values of A and B using Corollary 4 as reported in Table

1. Recall that by Corollary 4, PF2 has the smallest cost if k < Aτ1; PF1 has the smallest cost

if k > Bτ1; and FCFS has the smallest cost if Aτ1 ≤ k ≤ Bτ1. We then were able to compute

the long-run average cost under the optimal policy within Π (denoted by Cπ∗) using analytical

expressions for CF , CPF1 , or CPF2 .

Table 1: The threshold values to characterize the best policy in Π.

τ1 = 0.2 τ1 = 1 τ1 = 5

ρ p1 Aτ1 Bτ1 Aτ1 Bτ1 Aτ1 Bτ1

0.1 0.075 0.252 0.532 1.612 4.025 12.79

0.3 0.5 0.076 0.253 0.580 1.725 3.955 13.09

0.9 0.078 0.248 0.620 1.880 3.970 13.35

0.1 0.048 0.318 0.307 1.831 2.540 12.76

0.7 0.5 0.058 0.330 0.450 2.223 3.030 17.35

0.9 0.078 0.394 0.546 3.255 3.140 21.01

0.1 0.021 0.370 0.169 2.000 1.735 12.80

0.9 0.5 0.040 0.395 0.375 2.664 2.530 25.00

0.9 0.078 0.576 0.500 5.918 2.700 46.56

To obtain the long-run average cost under the G-cµ rule (denoted by CG), we simulated the
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underlying queueing system on Arena 14 simulation software. Specifically, we ran 100 independent

replications of length 60,000 minutes for each scenario and truncated the first 6,000 minutes based

on a warm-up period analysis. To implement the G-cµ rule in our simulations, we computed a

priority index for each customer in the queue and assigned non-preemptive priority to the one

with the largest index. Under the specific cost structure and experimental setting of this section,

the priority index for a customer who waited for t ≥ 0 time units is given by 2kt/τ1 for a type 1

customer and 2t for a type 2 customer. We report the mean percentage change in cost by using

G-cµ rule over the best static policy, i.e., (CG − Cπ∗) × 100/Cπ∗ and the 95% confidence interval

(C.I.) of this percentage change from the simulation runs in Tables 2, 3, and 4. If this confidence

interval does not contain zero, then we conclude that there is statistical evidence that the best

static policy and the G-cµ rule are different and the comparison is in favor of the best static policy

for a positive confidence interval and the G-cµ rule for a negative confidence interval. (Here, and

in the rest of this section “the best static policy” or “the optimal static policy” both refer to the

optimal policy in Π.)

We first present the case with equal service rates for all customers in Table 2. From Table 2,

we find that the differences between the best static policy and the G-cµ rule are not statistically

significant in most scenarios. (Confidence intervals implying statistical significance are indicated

in bold.) In particular, for the case with equal service rates for all customers, when the waiting

costs are not too different (k = 0.9) or the traffic intensity is not high (ρ ∈ {0.3, 0.7}), there seems

to be no advantage to using the G-cµ rule over the best static policy. Indeed, in two scenarios

(ρ = 0.3, p1 = 0.9, k = 0.1 and ρ = 0.7, p1 = 0.5, k = 0.1), the best static policy performs better

than the G-cµ rule. However, when the traffic intensity is high (ρ = 0.9), the difference in costs

between the two types is large (k ∈ {0.1, 5}), and the proportion of the “important” type with a

higher cost coefficient is large, then the G-cµ rule performs significantly better than the best static

policy.

We next compare the best static policy and the G-cµ rule under different service rates in Tables

3 and 4. Below are our observations:

• Under light traffic, there is no statistically significant difference between the best static policy

and the G-cµ rule in most scenarios, and in statistically significant ones, the best static policy

performs better.

• For moderate or high traffic intensity, when there is a clearly more important type that has a
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Table 2: The best static policy (π∗) and 95% C.I. on the percentage change in cost by using G-cµ
rule over the best static policy when τ1 = τ2 = 1.

k = 0.1 k = 0.9 k = 5

ρ p1 π∗ CG−Cπ∗
Cπ∗

× 100 π∗ CG−Cπ∗
Cπ∗

× 100 π∗ CG−Cπ∗
Cπ∗

× 100

0.1 PF2 -0.38 ± 1.60 FCFS -1.32 ± 1.60 PF1 -0.62 ± 1.58
0.3 0.5 PF2 0.98 ± 1.60 FCFS -1.29 ± 1.60 PF1 0.32 ± 1.56

0.9 PF2 1.67 ± 1.60 FCFS -1.17 ± 1.60 PF1 -0.97 ± 1.61

0.1 PF2 1.41 ± 1.51 FCFS -0.06 ± 1.67 PF1 0.13 ± 1.63
0.7 0.5 PF2 3.37 ± 1.38 FCFS -0.25 ± 1.66 PF1 -0.57 ± 1.50

0.9 PF2 0.99 ± 1.58 FCFS -0.11 ± 1.66 PF1 -2.92 ± 1.57

0.1 PF2 -7.52 ± 4.53 FCFS 2.60 ± 5.39 PF1 1.39 ± 5.31
0.9 0.5 PF2 1.01 ± 5.00 FCFS 2.42 ± 5.38 PF1 -6.87 ± 4.85

0.9 PF2 2.58 ± 5.35 FCFS 2.59 ± 5.39 FCFS -18.50 ± 4.19

substantially higher cost parameter, service rate, and proportion of demand (scenarios with

τ1 = 5, k = 0.1, p1 = 0.1 or τ1 = 0.2, k = 5, p1 = 0.9), then the optimal static policy is

preferable over the G-cµ rule.

• Under heavy traffic, when the two types are similar in terms of their cost parameters (k = 0.9)

but there is a substantial difference between their service rates and the faster type has a

higher proportion (scenarios with τ1 = 0.2, p1 = 0.9 or τ1 = 5, p1 = 0.1), then the G-cµ rule

outperforms the optimal static policy.

Table 3: The best static policy (π∗) and 95% C.I. on the percentage change in cost by using G-cµ
rule over the best static policy when τ1 = 5 and τ2 = 1.

k = 0.1 k = 0.9 k = 5

ρ p1 π∗ CG−Cπ∗
Cπ∗

× 100 π∗ CG−Cπ∗
Cπ∗

× 100 π∗ CG−Cπ∗
Cπ∗

× 100

0.1 PF2 -0.65 ± 2.95 PF2 2.14 ± 3.29 FCFS -0.49 ± 3.70
0.3 0.5 PF2 0.52 ± 2.22 PF2 1.11 ± 2.50 FCFS 0.00 ± 3.11

0.9 PF2 0.00 ± 2.78 PF2 0.56 ± 3.00 FCFS 0.31 ± 3.12

0.1 PF2 1.90 ± 1.73 PF2 2.87 ± 3.23 FCFS -2.89 ± 3.74
0.7 0.5 PF2 3.12 ± 2.62 PF2 2.46 ± 4.55 FCFS 1.48 ± 4.56

0.9 PF2 1.26 ± 4.67 PF2 1.76 ± 4.88 FCFS 1.75 ± 5.17

0.1 PF2 6.27 ± 6.03 PF2 -12.13 ± 7.44 FCFS -1.41 ± 8.87
0.9 0.5 PF2 0.45 ± 9.18 PF2 1.41 ± 9.97 FCFS 0.31 ± 9.72

0.9 PF2 1.82 ± 9.03 PF2 -0.17 ± 8.51 FCFS 0.36 ± 8.79

Another important observation from the numerical experiments presented in Tables 2, 3, and 4
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Table 4: The best static policy (π∗) and 95% C.I. on the percentage change in cost by using G-cµ
rule over the best static policy when τ1 = 0.2 and τ2 = 1.

k = 0.1 k = 0.9 k = 5

ρ p1 π∗ CG−Cπ∗
Cπ∗

× 100 π∗ CG−Cπ∗
Cπ∗

× 100 π∗ CG−Cπ∗
Cπ∗

× 100

0.1 FCFS -1.24 ± 1.59 PF1 -0.70 ± 1.60 PF1 -0.56 ± 1.49
0.3 0.5 FCFS -1.23 ± 1.47 PF1 1.70 ± 1.28 PF1 1.06 ± 1.08

0.9 FCFS -1.04 ± 1.72 PF1 2.50 ± 1.13 PF1 0.84 ± 1.08

0.1 FCFS 0.01 ± 1.73 PF1 0.58 ± 1.81 PF1 1.63 ± 1.73
0.7 0.5 FCFS -2.48 ± 1.77 PF1 1.73 ± 1.87 PF1 2.84 ± 1.42

0.9 FCFS -4.05 ± 2.05 PF1 3.19 ± 1.43 PF1 5.14 ± 0.99

0.1 FCFS 1.91 ± 5.60 PF1 3.30 ± 5.60 PF1 3.65 ± 5.29
0.9 0.5 FCFS -1.28 ± 4.40 PF1 0.98 ± 4.63 PF1 1.28 ± 4.88

0.9 FCFS -4.78 ± 3.95 PF1 -11.02 ± 3.34 PF1 7.00 ± 2.61

is that when FCFS is the best static policy, it either performs similarly with the G-cµ rule or the

G-cµ rule outperforms it. We also observe that for heavy-traffic scenarios where the parameters

fall close to the thresholds that characterize the optimal static policy reported in Table 1, possibly

suggesting that none of the static policies stands out, the G-cµ rule performs better than the

optimal static policy. Hence, it would be worthwhile to consider the more complex G-cµ rule over

a static policy when the traffic is heavy and there is not a clearly more “important” type. One

could assess whether there is clearly a more important type or not by considering how far the

system parameters land from the thresholds of the optimal static policy. If they are closer to a

threshold, such as in scenarios τ1 = 1, k = 5, p1 = 0.9 or τ1 = 5, k = 0.9, p1 = 0.1 above, then this

could be taken as an indicator that there is not a clearly more important type and hence G-cµ

rule should be considered under heavy traffic. On the other hand, when the traffic is light or the

system parameters fall farther away from the thresholds, e.g., when one type has a substantially

larger cost, service rate, and proportion, then it is not necessary to use the G-cµ rule and in fact it

could be better to use the optimal static policy, which does not require knowing the cost function

precisely and is much simpler to implement.

7 Conclusions

In this paper, to answer some basic questions surrounding prioritization of certain customer groups

in a service system, we studied a single-server queueing model with stationary Poisson arrivals of

two types of customers with possibly distinct service time distributions and nonlinear waiting cost
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functions. When queue-waiting costs are nonlinear functions of time, it is known that the priority

policy that minimizes the long-run average waiting costs would be state dependent, i.e., dependent

on the durations of time customers in the queue have already spent waiting, in addition to their

types. However, in practice, the most commonly employed queueing disciplines are still first-come-

first-serve (FCFS) and type-based priority policies that give exclusive priority to one of the types

of customers. In this paper, we compared these static policies in terms of their long-run average

performance and derived several interesting insights. In particular, using the probabilistic analog

of the mean value theorem, we obtained a complete ordering of the three policies (namely, FCFS,

PF1 that prioritizes type 1 customers, and PF2 that prioritizes type 2 customers) for general cost

functions under some mild existence conditions. To demonstrate how this result can be used in

practice and to generate useful managerial insights, we then took a closer look at the case with

polynomial cost functions, particularly the case with quadratic costs.

It is well known that if all customers have linear waiting costs, then only the product of the

rates of service and waiting cost will affect the characterization of optimal policies, and there will

always be a type-based priority policy that performs at least as well as FCFS. However, we found

that this is no longer the case when cost functions are quadratic and FCFS might perform better

than prioritizing either one of the two types. In particular, we showed that the characterization

of the best policy among FCFS, PF1, and PF2 depends on the rate of arrivals, proportion of each

customer type in the population, first three moments of the service times, and cost parameters. For

example, we found that if the two types of customers are similar in terms of the first two moments

of their service times [mean service times], then the parameter region where FCFS is better than

the two type-based priority policies enlarges with an increase in arrival rate [with higher service-

time variability]. Hence, haphazardly replacing FCFS discipline with a type-based priority policy

without considering system parameters such as traffic intensity and service-time variability may

lead to inferior system performance when there is any concern that the waiting cost functions

might not be linear. One situation that we identified where it would be safe to replace FCFS

discipline with a type-based priority policy is when the derivative of the cost function of one type is

bounded from above (as in a linear cost function) and the other type has a quadratic cost function.

In such a case, it is better to prioritize the type with quadratic cost under heavy traffic no matter

how the service time distributions for the two types compare.

As a byproduct of our study on quadratic cost functions, we were also able to obtain some useful

results on the problem of minimizing the variance of steady-state waiting times, which is widely
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accepted as a suitable performance measure to judge fairness of different queueing disciplines. In

particular, for the case where the two types have equal means but possibly different higher moments,

we showed that if the traffic intensity is above
√

2/(1 +
√

2) ≈ 0.586, then FCFS minimizes the

variance of steady-state waiting times within the set of all static policies when neither type is more

dominant in numbers. However, when the traffic intensity is below this threshold, then it is best

to prioritize the type with smaller service-time variance.

We also conducted a numerical study to compare the performance of the best static policy

identified through our analytical results with a benchmark state-dependent policy, namely, the G-

cµ rule for M/M/1 queues with two types of customers under quadratic waiting costs. This study

suggests that in most scenarios considered, using the best static policy would not result in significant

differences in long-run average costs when compared with the G-cµ rule. More specifically, G-cµ

performs better than the best static policy for a busy system when it is not clear which type is

more “important” with respect to dominance in rates of cost and service. On the other hand,

when the traffic is not heavy, or one type has substantially larger cost of waiting, service rate, and

proportion of the demand, then it is not necessary to use the G-cµ rule since the best static policy,

which is much easier to implement and which does not require precise knowledge on the waiting

cost function, performs similarly or even slightly better.
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Appendix

In this Appendix, we provide proofs of results and other supplemental material that could not be

presented in the main text due to space considerations.

Proof of equivalence of Equations (1) and (2): The long-run average cost defined by (1) can

be written as

Cπ =

2∑
i=1

lim
t→∞

∑ni(t)
k=1 Ci(V

π,x0
i,k )

ni(t)

(ni(t)
t

)

=

2∑
i=1

lim
t→∞

∑ni(t)
k=1 Ci(V

π,x0
i,k )

ni(t)
lim
t→∞

ni(t)

t
=

2∑
i=1

λpi lim
n→∞

∑n
k=1Ci(V

π,x0
i,k )

n
, (15)

which follows from the fact that {ni(t), t ≥ 0} is a Poisson process with rate λpi for i ∈ {1, 2}. In

the following we will prove that for i ∈ {1, 2} when E
[∣∣Ci(W π

i )
∣∣] is finite,

lim
n→∞

∑n
k=1Ci(V

π,x0
i,k )

n
= E [Ci(W

π
i )] , (16)

which shows that (15) (and hence (1)) is equivalent to (2).

In the remainder of this proof, we drop the superscripts π and x0 for notational convenience,

and let Tik, Sik and Dik be the arrival time, service time and departure time of the kth type i

customer, respectively, under policy π and initial state x0. Then, Vik = Dik − Tik − Sik is the

queue-waiting time for this customer. Note that {Vik, k = 1, 2, , . . .} for each i ∈ {1, 2} is a delayed

regenerative process with nth regeneration happening at Ni,n for n = 0, 1, 2, . . ., where Ni,0 = 1,

and

Ni,n = min{k : k > Ni,n−1, Vik = 0}.

Note also that for each i ∈ {1, 2}, {Ci (Vik) , k = 1, 2, . . .} is a regenerative process with the

same regeneration epoches as {Vik, k = 1, 2, . . .}. Then, by Theorem 13 of Chapter 2 and last

paragraph of page 93 in Wolff (1989), (16) holds if
∑Ni,1−1

k=1 |Ci(Vik)| < ∞ with probability one,

E [Ni,2 −Ni,1] <∞, and E
[∑Ni,2−1

k=Ni,1
|Ci(Vik)|

]
<∞. We next complete the proof by showing that

these three conditions hold.

When ρ < 1, the system is stable, i.e., it will return to the empty state within finite time with

probability one and also the expected time it takes to return to the empty state is finite (see, e.g.,

Theorem 7.11 in Kulkarni (2009)). This implies that Ni,1 <∞ with probability one, Ni,2 −Ni,1 <
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∞ with probability one, Vi,k < ∞ for any i and k with probability one and E [Ni,2 −Ni,1] <

∞. At last, by Theorem B.5 (i) in El-Taha and Stidham Jr (1999), E
[∑Ni,2−1

k=Ni,1
|Ci(Vik)|

]
=

E [|Ci(Wi)|]E [Ni,2 −Ni,1] is finite under the assumption that E [|Ci(Wi)|] is finite.

Proof of Lemma 3: We use sample path arguments to prove the stochastic inequalities. Let i

be fixed to be either 1 or 2. Here type i and 3− i customers will be called priority and non-priority

customers, respectively.

We index the customers by their arrival order to the system, and let sj be the arriving time of

customer j. Then, for customers l and j, where j > l ≥ 1, we have sj > sl. Let tπj be the service

starting time of customer j under policy π, then tπj ≥ sj . Let also V π
j denote the waiting time of

customer j under policy π, then V π
j = tπj − sj for j = 1, 2, . . ..

Under FCFS, we have tF1 < tF2 < · · · with probability one. Let j be the index of the first

non-priority customer whose service starts when there are priority customers waiting, and k be

the index of the first priority customer in the queue when j starts service under FCFS. Then, the

customers indexed from j to k − 1 are all non-priority customers. Note that sj < · · · < sk−1 <

sk < tFj < · · · < tFk−1 < tFk .

Consider a policy π that follows FCFS except that it serves customer k first, and then serves the

non-priority customers j, . . . , k−1. For the kth customer, who is a priority customer, tπk = tFj < tFk

and V π
k = tπk − sk < tFk − sk = V F

k . For l = j, . . . , k− 1, who are all non-priority customers, tπl > tFl

and V π
l = tπl − sl > tFl − sl = V F

l . For any l /∈ {j, . . . , k}, we have V π
l = V F

l .

If we keep changing the service order like this when there are non-priority customers starting

service while priority customers are waiting in the queue, then we will eventually reach policy PFi.

This coupling argument then will yield V PFi
i,n ≤st V F

i,n and V PFi
3−i,n ≥st V F

3−i,n for n ≥ 1. Since W π
i is

the steady-state waiting time for type i customers under policy π, then, as n→∞, V π
i,n

d→W π
i and

V π
3−i,n

d→ W π
3−i, and hence, according to Theorem 1.A.3(d) in Shaked and Shanthikumar (2007),

we have WPFi
i ≤st WF and WPFi

3−i ≥st WF .

Proof of Theorem 1: We prove this result by comparing the costs directly.

(a) For i ∈ {1, 2}, Equation (2) yields CF ≤ CPFi if and only if

pi

(
E
[
Ci(W

F )
]
− E

[
Ci(W

PFi
i )

])
≤ p3−i

(
E
[
C3−i(W

PFi
3−i )

]
− E

[
C3−i(W

F )
])

⇔ piE
[
C ′i(U

PFi
i )

](
E[WF ]− E[WPFi

i ]
)
≤ p3−iE

[
C ′3−i(U

PFi
3−i )

](
E[WPFi

3−i ]− E[WF ]
)
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based on Lemma 1. Since

p3−i
(
E[WPFi

3−i ]− E[WF ]
)

pi
(
E[WF ]− E[WPFi

i ]
) =

p3−i

(
1

(1−ρ)(1−ρi) −
1

1−ρ

)
pi

(
1

1−ρ −
1

1−ρi

) =
p3−iρi
piρ3−i

=
τi
τ3−i

,

we have CF ≤ CPFi if and only if ai ≤ bi.

(b) Equation (2) yields CPF1 ≤ CPF2 if and only

p2

(
E
[
C2(WPF1

2 )
]
− E

[
C2(WPF2

2 )
])
≤ p1

(
E
[
C1(WPF2

1 )
]
− E

[
C1(WPF1

1 )
])
. (17)

We have,

p2

(
E
[
C2(WPF1

2 )
]
− E

[
C2(WPF2

2 )
])

=p2

(
E
[
C2(WPF1

2 )
]
− E

[
C2(WF )

]
+ E

[
C2(WF )

]
− E

[
C2(WPF2

2 )
])

=p2

((
E[WPF1

2 ]− E[WF ]
)
E
[
C ′2(UPF1

2 )
]

+
(
E[WF

2 ]− E[WPF2
2 ]

)
E
[
C ′2(UPF2

2 )
]) (

by (4)
)

=p2

(
λρ1ξ̄

2(1− ρ1)(1− ρ)
E
[
C ′2(UPF1

2 )
]

+
λρ1ξ̄

2(1− ρ2)(1− ρ)
E
[
C ′2(UPF2

2 )
])

=
τ2p2λρ1ξ̄

2(1− ρ1)(1− ρ2)(1− ρ)

[
(1− ρ2)

E
[
C ′2(UPF1

2 )
]

τ2
+ (1− ρ1)

E
[
C ′2(UPF2

2 )
]

τ2

]
,

=
ρ1ρ2ξ̄

2(1− ρ1)(1− ρ2)(1− ρ)

[
(1− ρ2)b1 + (1− ρ1)a2

]
. (18)

Interchanging indices 1 and 2 in (18) yields

p1

(
E
[
C1(WPF2

1 )
]
− E

[
C1(WPF1

1 )
])

=
ρ1ρ2ξ̄

2(1− ρ1)(1− ρ2)(1− ρ)

[
(1− ρ1)b2 + (1− ρ2)a1

]
. (19)

Then, from (17), (18) and (19), we have CPF1 ≤ CPF2 if and only if (1−ρ1)(a2−b2) ≤ (1−ρ2)(a1−

b1).

Proof of Corollary 2: (a) If C ′1(t) ≥ τ1 max{a2, b1} for all t ≥ 0, then for any non-negative

random variable X, we have E [C ′1(X)] ≥ τ1 max{a2, b1} when the expectation exists. Hence,

a1 =
E
[
C ′1(UPF1

1 )
]

τ1
≥ τ1 max{a2, b1}

τ1
≥ b1,
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which implies that CF ≥ CPF1 from Theorem 1(a). Similarly,

b2 =
E
[
C ′1(UPF2

1 )
]

τ1
≥ τ1 max{a2, b1}

τ1
≥ a2,

which implies that CF ≤ CPF2 from Theorem 1(a).

(b) If C ′1(t) ≤ τ1 min{a2, b1} for all t ≥ 0, then we have E [C ′1(X)] ≤ τ1 min{a2, b1} for any non-

negative random variable X when the expectation exists. Then, a1 ≤ b1 and b2 ≤ a2, which

implies that CF ≤ CPF1 and CF ≥ CPF2 from Theorem 1(a).

(c) If τ1a2 ≤ C ′1(t) ≤ τ1b1 for all t ≥ 0, then we have τ1a2 ≤ E [C ′1(X)] ≤ τ1b1 for any non-negative

random variable X when the expectation exists. Then, ai ≤ bi for i ∈ {1, 2}, which implies

that CF ≤ CPF1 and CF ≤ CPF2 from Theorem 1(a).

Proof of Corollary 3: (a) Since C ′1(t) ≥ max{α, β}C ′2(t) for all t ≥ 0, then for any non-negative

random variable X, we have E[C ′1(X)] ≥ max{α, β}E[C ′2(X)] when the expectations exist.

Consequently, for X = UPF1
1 we have

E[C ′1(UPF1
1 )] ≥ βE[C ′2(UPF1

1 )] =

(
τ1

τ2

)
E[C ′2(UPF1

2 )]⇔ a1 ≥ b1,

and hence by Theorem 1(a), CPF1 ≤ CF . Similarly, for X = UPF2
1 we have

E[C ′1(UPF2
1 )] ≥ αE[C ′2(UPF2

1 )] =

(
τ1

τ2

)
E[C ′2(UPF2

2 )]⇔ b2 ≥ a2,

and hence by Theorem 1(a), CF ≤ CPF2 .

(b) Similar to part (a), since C ′1(t) ≤ min{α, β}C ′2(t) for all t ≥ 0, we have a1 ≤ b1 and b2 ≤ a2.

Thus, by Theorem 1(a), we have CPF2 ≤ CF ≤ CPF1 .

(c) Similar to part (a), since αC ′2(t) ≤ C ′1(t) ≤ βC ′2(t) for all t ≥ 0, we have a1 ≤ b1 and a2 ≤ b2,

which implies that CF ≤ CPF1 and CF ≤ CPF2 by Theorem 1(a).

(d) Let W π denote the steady-state waiting time for a randomly picked customer under policy

35



π ∈ {F, PF1, PF2}. By conditioning on the customer type, we have

E [C2(W π)] = p1E [C2(W π
1 )] + p2E [C2(W π

2 )] . (20)

According to Theorem 2 in Vasicek (1977), if C2(·) is convex, then we have

E[C2(WF )] ≤ E[C2(WPFi)] for i ∈ {1, 2} (21)

because service times are i.i.d. for all customers and they are subject to the same waiting cost

function. From (20) and (21), we have

piE
[
C2(WF )

]
+ p3−iE

[
C2(WF )

]
≤ piE

[
C2(WPFi

i )
]

+ p3−iE
[
C2(WPFi

3−i )
]

⇔
E
[
C2(WF )

]
− E

[
C2(WPFi

i )
]

p3−i
≤
E
[
C2(WPFi

3−i )
]
− E

[
C2(WF )

]
pi

for i ∈ {1, 2}. (22)

Since C2(·) is non-decreasing and WPFi
i ≤st WF ≤st WPFi

3−i from Lemma 3, we have

E
[
C2(WF )

]
− E

[
C2(WPFi

i )
]
≥ 0, E

[
C2(WPFi

3−i )
]
− E

[
C2(WF )

]
≥ 0, for i ∈ {1, 2}.

Then, (22) leads to

(
pi
p3−i

)E [C2(WF )
]
− E

[
C2(WPFi

i )
]

E
[
C2(WPFi

3−i )
]
− E [C2(WF )]

 ≤ 1 for i ∈ {1, 2}. (23)

(Note that the numerator and denominator of (23) are positive for i = 1 and i = 2, respectively,

by the assumption that E
[
C ′2(UPF1

1 )
]
6= 0 and E

[
C ′2(UPF2

1 )
]
6= 0, and Lemma 1.) Hence, by

Lemmas 1 and 2, we have

α =

(
τ1

τ2

)(
E[C ′2(UPF2

2 )]

E[C ′2(UPF2
1 )]

)
=

(
p2

p1

)(
E[C2(WF )]− E[C2(WPF2

2 )]

E[C2(WPF2
1 )]− E[C2(WF )]

)
≤ 1

and

β =

(
τ1

τ2

)(
E[C ′2(UPF1

2 )]

E[C ′2(UPF1
1 )]

)
=

(
p2

p1

)(
E[C2(WPF1

2 )]− E[C2(WF )]

E[C2(WF )]− E[C2(WPF1
1 )]

)
≥ 1.
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We need new notation and Lemma 4 to prove Proposition 2. Let TB denote the length of a busy

period, which is defined as the length of time between the arrival of a customer at the empty system

and the first subsequent time at which the system is again empty. We also define TBj as the length

a busy period during which only type j customers arrive and are served for j ∈ {1, 2}. Let B(s) and

Bj(s) denote the respective LSTs of TB and TBj for s ≥ 0. For i ∈ {1, 2}, we also let S̃i(s) denote

the LST of the service time distribution for type i customers, and define S̃(s) ≡ p1S̃1(s) + p2S̃2(s)

for s ≥ 0. Finally, let W̃F (s) and W̃
PFj
i (s) denote the respective LSTs of WF and W

PFj
i for

i, j ∈ {1, 2}.

Lemma 4. (Miller, 1960) For fixed j ∈ {1, 2}, we have

W̃
PFj
j (s) =

(1− ρ)s+ λp3−j
(
1− S̃3−j(s)

)
s− λpj

(
1− S̃j(s)

) , W̃F (s) =
(1− ρ)s

s− λ
(

1− S̃(s)
) ,

and

W̃
PFj
3−j (s) = W̃F

(
λpj(1−Bj(s)) + s

)
=

1− ρ

1−
λ
(

1−S̃
(
λpj(1−Bj(s))+s

))
λpj(1−Bj(s))+s

,

where Bj(s) is the unique solution to Bj(s) = S̃j
(
s+λpj(1−Bj(s))

)
for s > 0 and lims→∞Bj(s) = 0.

Proof of Proposition 2. Assumption 1 holds for type i for which Ci(t) is in the form of (5)

under policies FCFS, PF1 and PF2 if E
[(
WF

)l]
and E

[(
WPFm
i

)l]
are finite for all m ∈ {1, 2}

and l = 1, 2, . . . , j(i). Note that by Lemma 3 and Theorem 1.A.3(a) of Shaked and Shanthikumar

(2007), for 1 ≤ l <∞, we have

E

[(
WPFi
i

)l]
≤ E

[(
WF

)l] ≤ E [(WPF3−i
i

)l]
,

and thus we only need to prove that E

[(
W

PF3−i
i

)l]
is finite. Note also that

E

[(
W

PF3−i
i

)l]
= (−1)l

dlW̃
PF3−i
i (s)

dsl

∣∣∣
s=0

, (24)

and from Lemma 4, we have

W̃
PF3−i
i (s) = W̃F

(
λp3−i(1−B3−i(s)) + s

)
.

Then, using Faa di Bruno’s formula (see, e.g., Theorem 2 of Roman (1980)), (24) is finite if
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dnW̃F (s)
dsn |s=0 and dnB3−i(s)

dsn |s=0 are finite for all n ≤ l, i.e., if the nth moment of WF and TB3−i

are finite.

When ρ < 1, we can obtain the nth moment of WF (see, e.g., page 238 in Gross et al. (2008))

as

E
[(
WF

)n]
=

λ

1− ρ

n∑
j=1

(
n

j

)
E
[(
WF

)n−j] E [Sj+1
]

j + 1
,

where E
[
Sj+1

]
is the (j + 1)st moment of service time of a randomly picked customer with a

service time LST of S̃(s). Hence, E
[(
WF

)n]
is finite if ρ < 1 and the first n+1 moments of service

times of both types are finite. Besides, from Theorem 1 of Ghahramani and Wolff (1989), the nth

moment of the busy period for a single-class queue is finite if and only if the nth moment of the

service times is finite. Thus, E

[(
W

PF3−i
i

)l]
is finite if ρ < 1 and the first l+ 1 moments of service

times are finite.

Proof of Proposition 3. We first drive expressions (8) and (9) using definitions of ai and bi given

in Theorem 1. For some i, k,m ∈ {1, 2}, we have

E
[
C ′i(U

PFm
k )

]
= 2kiE

[
UPFmk

]
+ hi = ki

(
E
[
(WF )2

]
− E

[
(WPFm

k )2
]

E[WF ]− E[WPFm
k ]

)
+ hi,

from Equations (6) and (7). The expected waiting times have been given in Lemma 2, and the

second moments can be obtained from Gross et al. (2008) and Miller (1960):

E
[
(WF )2

]
=

λζ̄

3(1− ρ)
+

λ2ξ̄2

2(1− ρ)2
, E
[
(WPFk

k )2
]

=
λζ̄

3(1− ρk)
+

λ2pkξkξ̄

2(1− ρk)2
,

and

E
[
(WPFk

3−k )2
]

=
λζ̄

3(1− ρk)2(1− ρ)
+

λ2ξ̄2

2(1− ρk)2(1− ρ)2
+

λ2pkξkξ̄

2(1− ρk)3(1− ρ)
.

Then, we find

E[WF ]− E[WPFk
k ] =

λ2p3−kτ3−kξ̄

2(1− ρk)(1− ρ)
,

E[WPFk
3−k ]− E[WF ] =

λ2pkτkξ̄

2(1− ρk)(1− ρ)
,
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E
[(
WF

)2]− E [(WPFk
k

)2
]

=
ρ3−kλζ̄

3(1− ρk)(1− ρ)
+

λ2ξ̄

2(1− ρk)(1− ρ)

[
(1− ρk)(p1ξ1 + p2ξ2)

1− ρ
− pkξk(1− ρ)

1− ρk

]
=

λ2p3−kτ3−kζ̄

3(1− ρk)(1− ρ)
+

λ2p3−kξ̄

2(1− ρk)(1− ρ)

[
pkξkλτ3−k(2− ρ− ρk)

(1− ρ)(1− ρk)
+
ξ3−k(1− ρk)

1− ρ

]
,

E

[(
WPFk

3−k

)2
]
− E

[(
WF

)2]
=

[
ζ̄

3
+

λξ̄2

2(1− ρ)

]
λρk(2− ρk)

(1− ρ)(1− ρk)2
+

λ2pkξkξ̄

2(1− ρk)3(1− ρ)

=

[
2ζ̄(2− ρk)
3ξ̄(1− ρk)

+
λξ̄(2− ρk)

(1− ρ)(1− ρk)

]
λρkξ̄

2(1− ρk)(1− ρ)
+

λρkξkξ̄

2τk(1− ρk)3(1− ρ)
.

Hence,

E
[
C ′i(U

PFk
k )

]
= ki

[
2ζ̄

3ξ̄
+
pkξkλ(2− ρ− ρk)

(1− ρ)(1− ρk)
+
ξ3−k(1− ρk)
τ3−k(1− ρ)

]
+ hi

= ki

[
2ζ̄

3ξ̄
+ λpkξk

(
1

1− ρ
+

1

1− ρk

)
+ λp3−kξ3−k

(
1

1− ρ
+

1

ρ3−k

)]
+ hi

= ki

[
2ζ̄

3ξ̄
+

λξ̄

1− ρ
+
λpkξk
1− ρk

+
ξ3−k
τ3−k

]
+ hi, (25)

and

E
[
C ′i(U

PFk
3−k )

]
= ki

[
2ζ̄

3ξ̄

(
1 +

1

1− ρk

)
+

λξ̄

1− ρ

(
1 +

1

1− ρk

)
+

ξk
τk(1− ρk)2

]
+ hi, (26)

which yield Equations (8) and (9).

We next show that ai < b3−i for i = 1, 2. For i ∈ {1, 2}, Equations (8) and (9) yield

b3−i − ai =

(
ki
τi

)[
2ζ̄

3ξ̄(1− ρ3−i)
+
λξ̄ρ3−i
1− ρ

(
1

1− ρ3−i
+

1

1− ρi

)
+λp3−iξ3−i

(
1

(1− ρ3−i)2
+

1

1− ρi
+

1

1− ρ3−i

)]
, (27)

which is positive because ρ, ρ1, ρ2 < 1 and all moments of service times are positive. Therefore, when

both cost functions are quadratic, if ai > bi for some i ∈ {1, 2} (and thus a3−i ≤ bi < ai ≤ b3−i),

then PFi is the best among FCFS, PF1 and PF2 according to Corollary 1(b); otherwise (a1 ≤ b1

and a2 ≤ b2), FCFS is the best among FCFS, PF1, and PF2 by Corollary 1(a).

Proof of Corollary 4. The expressions for A and B and the characterization of the optimal
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policy follow from (10). We next prove that A < B. Let Gi(λ) = 2ζ̄
3ξ̄

+ λξ̄
1−λτ̄ + λpiξi

1−λpiτi and

Xi = 2ζ̄
3ξ̄

+ λξ̄
1−λτ̄ + ξi

τi
for i ∈ {1, 2}. Then, we have

A =
X1 + λp2ξ2

1−ρ2

X2 + G2(λ)+λp2ξ2
1−ρ2

, B =
X1 + G1(λ)+λp1ξ1

1−ρ1

X2 + λp1ξ1
1−ρ1

.

Note that for i ∈ {1, 2},

Gi(λ) + λpiξi
1− ρi

>
Gi(λ)

1− ρi
>

λξ̄

(1− ρi)(1− ρ)
>
λp3−iξ3−i
1− ρ3−i

,

where the last inequality follows from the fact that ξ̄ > p3−iξ3−i and (1−ρi)(1−ρ) < 1−ρ < 1−ρ3−i.

Hence, we have

A <
X1 + λp2ξ2

1−ρ2

X2 + λp1ξ1
1−ρ1

< B.

Proof of Proposition 4. (a) From the expression of A in the proof of Corollary 4, we have,

∂A

∂λ
=
G′2(λ)

(
2−ρ2
1−ρ2G2(λ) + ξ2

τ2

)
−
(
G2(λ) + ξ1

τ1

)(
p2τ2

(1−ρ2)2
G2(λ) + 2−ρ2

1−ρ2G
′
2(λ)

)
(

2−ρ2
1−ρ2G2(λ) + ξ2

τ2

)2

=
G′2(λ)

(
ξ2
τ2
− (2−ρ2)ξ1

(1−ρ2)τ1

)
−
(
G2(λ) + ξ1

τ1

)
p2τ2

(1−ρ2)2
G2(λ)(

2−ρ2
1−ρ2G2(λ) + ξ2

τ2

)2 < 0

if and only if

G′2(λ)

(
ξ2

τ2
− (2− ρ2)ξ1

(1− ρ2)τ1

)
−
(
G2(λ) +

ξ1

τ1

)
p2τ2

(1− ρ2)2
G2(λ) < 0. (28)

Note for i ∈ {1, 2},

G′i(λ) =
ξ̄

(1− λτ̄)2
+

piξi
(1− λpiτi)2

> 0.

Then, (28) is equivalent to

ξ2

τ2
− (2− ρ2)ξ1

(1− ρ2)τ1
<

p2τ2
(1−ρ2)2

(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp2ξ2

1−ρ2

)(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp2ξ2

1−ρ2 + ξ1
τ1

)
ξ̄

(1−ρ)2
+ p2ξ2

(1−ρ2)2

.
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(b) Similarly,

∂B

∂λ
=

(
p1τ1

(1−ρ1)2
G1(λ) + 2−ρ1

1−ρ1G
′
1(λ)

)(
G1(λ) + ξ2

τ2

)
−G′1(λ)

(
2−ρ1
1−ρ1G1(λ) + ξ1

τ1

)
(
G1(λ) + ξ2

τ2

)2

=

p1τ1
(1−ρ1)2

G1(λ)
(
G1(λ) + ξ2

τ2

)
+G′1(λ)

(
(2−ρ1)ξ2
(1−ρ1)τ2

− ξ1
τ1

)
(
G1(λ) + ξ2

τ2

)2 > 0

if and only if

ξ1

τ1
− (2− ρ1)ξ2

(1− ρ1)τ2
<

p1τ1
(1−ρ1)2

(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp1ξ1

1−ρ1

)(
2ζ̄
3ξ̄

+ λξ̄
1−ρ + λp1ξ1

1−ρ1 + ξ2
τ2

)
ξ̄

(1−ρ)2
+ p1ξ1

(1−ρ1)2

.

(c) Follows directly from the application of L’Hopital’s rule.

Proof of Proposition 5. (a) When service times are i.i.d., for notational convenience we drop

the subscript from all parameters related to the service time distribution, i.e., τi, ξi and ζi. Then,

A =

2ζ
3ξ + λξ

1−ρ + ξ
τ(1−ρ2)

2−ρ2
1−ρ2

(
2ζ
3ξ + λξ

1−ρ

)
+ ξ

τ(1−ρ2)2

, B =

2−ρ1
1−ρ1

(
2ζ
3ξ + λξ

1−ρ

)
+ ξ

τ(1−ρ1)2

2ζ
3ξ + λξ

1−ρ + ξ
τ(1−ρ1)

.

Let M ≡ 2ζ
3ξ + λξ

1−ρ , which is positive and not changing with respect to pi for i ∈ {1, 2}, then we

have

∂A

∂p2
=

−τM2 − ρ2ξ
(1−ρ2)M

(1−ρ2)2

λ

[
2−ρ2
1−ρ2M + ξ

τ(1−ρ2)2

]2 < 0.

Similarly, computing the partial derivative of B with respect to p1, we have

∂B

∂p1
=

τM2 + ρ1ξ
(1−ρ1)M

(1−ρ1)2

λ

[
M + ξ

τ(1−ρ1)

]2 > 0.

(b) In heavy traffic, i.e., as λ → 1/τ̄ , the expressions of A and B are given in Proposition 4. By

letting p1 → 0, we have p2 → 1, and hence, we have limλ→1/τ̄ , p1→0A = 0 and limλ→1/τ̄ , p1→0B = 2.

Similarly, by letting p1 → 1, we have p2 → 0, and then limλ→1/τ̄ , p1→1A = 1/2 and limλ→1/τ̄ , p1→0B =

∞.
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Proof of Proposition 6. When service times are exponential, ζi = 6τ3
i and ξi = 2τ2

i for i ∈ {1, 2},

and hence we have,

Aexp =

p1τ31 +p2τ32
p1τ21 +p2τ22

+
λ(p1τ21 +p2τ22 )

1−ρ +
λp2τ22
1−ρ2 + τ1

2−ρ2
1−ρ2

(
p1τ31 +p2τ32
p1τ21 +p2τ22

+
λ(p1τ21 +p2τ22 )

1−ρ +
λp2τ22
1−ρ2

)
+ τ2

,

Bexp =

2−ρ1
1−ρ1

(
p1τ31 +p2τ32
p1τ21 +p2τ22

+
λ(p1τ21 +p2τ22 )

1−ρ +
λp1τ21
1−ρ1

)
+ τ1

p1τ31 +p2τ32
p1τ21 +p2τ22

+
λ(p1τ21 +p2τ22 )

1−ρ +
λp1τ21
1−ρ1 + τ2

.

When service times are deterministic, ζi = τ3
i and ξi = τ2

i for i ∈ {1, 2}, and then we have

Adet =

2(p1τ31 +p2τ32 )
3(p1τ21 +p2τ22 )

+
λ(p1τ21 +p2τ22 )

1−ρ +
λp2τ22
1−ρ2 + τ1

2−ρ2
1−ρ2

(
2(p1τ31 +p2τ32 )
3(p1τ21 +p2τ22 )

+
λ(p1τ21 +p2τ22 )

1−ρ +
λp2τ22
1−ρ2

)
+ τ2

,

Bdet =

2−ρ1
1−ρ1

(
2(p1τ31 +p2τ32 )
3(p1τ21 +p2τ22 )

+
λ(p1τ21 +p2τ22 )

1−ρ +
λp1τ21
1−ρ1

)
+ τ1

2(p1τ31 +p2τ32 )
3(p1τ21 +p2τ22 )

+
λ(p1τ21 +p2τ22 )

1−ρ +
λp1τ21
1−ρ1 + τ2

.

(a) For notational simplicity, for i ∈ {1, 2}, we let

M (i)
exp ≡

p1τ
3
1 + p2τ

3
2

p1τ2
1 + p2τ2

2

+
λ
(
p1τ

2
1 + p2τ

2
2

)
1− ρ

+
λpiτ

2
i

1− ρi
,

M
(i)
det ≡

2
(
p1τ

3
1 + p2τ

3
2

)
3
(
p1τ2

1 + p2τ2
2

) +
λ
(
p1τ

2
1 + p2τ

2
2

)
1− ρ

+
λpiτ

2
i

1− ρi
,

where M
(i)
exp > M

(i)
det. Taking the difference of Aexp and Adet, we have

Aexp −Adet =

(
τ2 −

(
2−ρ2
1−ρ2

)
τ1

)(
M

(2)
exp −M (2)

det

)
((

2−ρ2
1−ρ2

)
M

(2)
exp + τ2

)((
2−ρ2
1−ρ2

)
M

(2)
det + τ2

) .
Hence, Aexp ≤ Adet if and only if τ2 ≤ 2−ρ2

1−ρ2 τ1.

(b) Taking the difference of Bexp and Bdet, we have

Bexp −Bdet =

((
2−ρ1
1−ρ1

)
τ2 − τ1

)(
M

(1)
exp −M (1)

det

)
(
M

(1)
det + τ2

)(
M

(1)
exp + τ2

) .
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Hence, Bexp ≥ Bdet if and only if τ1 ≤ 2−ρ1
1−ρ1 τ2.

Proof of Proposition 7. The expressions for α and β can be obtained from Corollary 3 and

Equations (25) and (26). Let Ad[Bd] and An[Bn] denote the denominator and numerator of A[B],

as given in Corollary 4, respectively. Then,

α =

(
τ1

τ2

)(
k2An + h2

k2Ad + h2

)
, β =

(
τ1

τ2

)(
k2Bn + h2

k2Bd + h2

)
. (29)

(a) We have A < B and hence AnBd −BnAd < 0. Besides,

Bd +An −Ad −Bn = −G1(λ)

1− ρ1
− G2(λ)

1− ρ2
< 0.

Hence,

α− β =

(
τ1

τ2

)(
k2

2(AnBd −BnAd) + h2k2(Bd +An −Ad −Bn)

(k2Ad + h2)(k2Bd + h2)

)
< 0.

(b) From Corollary 4, if (11) holds, then

∂A

∂λ
=
A′nAd −A′dAn

A2
d

< 0,

where A′d and A′n denote the partial derivatives of Ad and An with respect to λ, respectively.

Then, A′nAd−A′dAn < 0. Besides, the difference Ad−An = G2(λ)
1−ρ2 + ξ2

τ2
− ξ1

τ1
increases in λ since

G2(λ) increases and 1− ρ2 decreases in λ (see the proof of Corollary 4). Then, A′d > A′n.

∂α

∂λ
=

(
k2τ1

τ2

)(
k2(A′nAd −A′dAn) + h2(A′n −A′d)

(k2Ad + h2)2

)
< 0.

Thus, α decreases as λ increases.

Similarly, if (12) holds, then B′nBd − B′dBn > 0 from Corollary 4, where B′d and B′n denote

the partial derivatives of Bd and Bn with respect to λ, respectively. Besides, the difference

Bn − Bd = G1(λ)
1−ρ1 + ξ1

τ1
− ξ2

τ2
increases in λ since G1(λ) increases and 1− ρ1 decreases in λ (see
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the proof of Corollary 4). Then, B′n > B′d.

∂β

∂λ
=

(
k2τ1

τ2

)(
k2(B′nBd −B′dBn) + h2(B′n −B′d)

(k2Bd + h2)2

)
> 0.

Thus, β increases as λ increases.

When h2 = 0, we know from (29) that α = Aτ1/τ2 and β = Bτ1/τ2. Then, Proposition 4

directly provides the necessity of conditions (11) and (12). The limits for α and β as λ→ 1/τ̄

follows from (29), application of L’Hospital’s rule and part (c) of Proposition 4.

(c) Let Ān[B̄n] and Ād[B̄d] denote the numerator and denominator of A[B], as given in the proof

of Proposition 5, then

α =
k2Ān + h2

k2Ād + h2
, β =

k2B̄n + h2

k2B̄d + h2
.

From Proposition 5, A and B both increase in p1, then Ā′nĀd−Ā′dĀn > 0 and B̄′nB̄d−B̄′dB̄n > 0,

where A′n, A
′
d, B

′
n, B

′
d denote the partial derivatives of each quantity with respect to p1.

Besides, the difference Ād− Ān = 1
1−ρ2

(
2ζ
3ξ + λξ

1−ρ + λp2ξ
1−ρ2

)
increases in p2, and hence decreases

in p1, which implies that Ā′d < Ā′n. Then, we have

∂α

∂p1
=
k2

2(Ā′nĀd − Ā′dĀn) + k2h2(Ā′n − Ā′d)
(k2Ād + h2)2

> 0.

Similarly, the difference B̄n−B̄d = 1
1−ρ1

(
2ζ
3ξ + λξ

1−ρ + λp1ξ
1−ρ1

)
increases in p1, and hence B̄′n > B̄′d.

Then, we have ∂β
∂p1

> 0.

Example 3. Suppose that C2(t) = k2t
2 + h2t for h2, k2 ≥ 0. We next apply Corollary 3 and

Proposition 7 to three different waiting cost functions for type 1 customers.

(i) Let C1(t) = h1t for t ≥ 0, where h1 is positive. We compare C ′1(t) = h1 with αC ′2(t) and

βC ′2(t) for all t ≥ 0, where C ′2(t) = 2k2t + h2. Since C ′1(t) is fixed and C ′2(t) is increasing

without any bound, the only applicable case from Corollary 3 is that C ′1(t) ≤ αC ′2(t) for all

t ≥ 0, which is true if and only if h1 ≤ αh2. Hence, by applying Corollary 3, we know that

PF2 is better than FCFS and PF1 if h1 ≤ αh2. This means that Corollary 3 provides a partial

comparison of the three policies. On the other hand, for this case, Example 1(i) showed that
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Corollary 2 lead to a complete characterization. (Indeed, one can show that αh2 < τ1a2 for

qudratic cost functions.) Hence, Corollary 2 is more useful for this example.

(ii) When C1(t) = h1 ln(t+ 1) for t ≥ 0 and positive constant h1, we have C ′1(t) = h1/(t+ 1). As

t → ∞, we have C ′1(t) → 0 and C ′2(t) → ∞. Hence, the only applicable case from Corollary

3 is that C ′1(t) ≤ αC ′2(t) for all t ≥ 0, which is true if and only if h1 ≤ αh2. By applying

Corollary 3, we find that if h1 ≤ αh2, then PF2 is the best. In this example, both Corollaries

2 and 3 provide upper bounds on h1 when PF2 is the best, and since we can show that

τ1a2 > h2α, the bound from Corollary 2 is better than that from Corollary 3.

(iii) When C1(t) = k1(eh1t−1) for t ≥ 0 and positive constants k1 and h1, we have C ′1(t) = k1h1e
h1t.

Since C ′1(t) is exponential and C ′2(t) is linear, C ′1(t) will be greater than C ′2(t) for sufficiently

large t, and thus the only applicable case from Corollary 3 is that C ′1(t) ≥ βC ′2(t) for all t ≥ 0,

which is true if and only if the following condition holds (the proof is provided below):

k1 ≥
β

h1
max

{
h2,

2k2

h1

}
e

min
{
h2h1
2k2
−1,0

}
. (30)

In this example, both Corollaries 2 and 3 provide conditions under which PF1 is the best.

Whether Corollary 2 or 3 is better depends on the system parameters. To be more specific,

for this example, Corollary 2 is more useful (in that it provides a weaker condition on the

optimality of PF1) if τ1b1h1 < 2k2βe

(
h2h1
2k2
−1
)

and h2 <
2k2
h1

, and Corollary 3 is more useful

otherwise.

Proof of Example 3(iii). Let f(t) = C ′1(t) − βC ′2(t) = k1h1e
h1t − β(2k2t + h2) for t ≥ 0. We

need to find conditions so that f(t) ≥ 0 for all t ≥ 0. First we find that f(t) is convex in t for t ≥ 0

by the second derivative test, so there is a global minimum for t ≥ 0. We solve for f ′(t) = 0 and

we have a stationary point t∗ = 1
h1

ln
(

2βk2
k1h21

)
. We have the following two cases:

Case 1: If t∗ ≤ 0, i.e., k1 ≥ 2βk2
h21

, then the minimum happens at t = 0, and hence we need

f(0) = k1h1 − h2β ≥ 0, which is equivalent to

k1 ≥
h2β

h1
. (31)

Case 2: If t∗ > 0, i.e., k1 < 2βk2
h21

, the minimum happens at t∗ and hence we need f(t∗) =
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2βk2
h1
− 2βk2

h1
ln
(

2βk2
k1h21

)
− βh2 ≥ 0, which is equivalent to

k1 ≥
2βk2

h2
1

e
−
(

1−h2h1
2k2

)
. (32)

Note that if h2 ≥ 2k2
h1

, then condition (32) implies that k1 ≥ 2βk2
h21

, which contradicts with the

condition for Case 2. Hence, if h2 ≥ 2k2
h1

, then the condition must be (31). If h2 < 2k2
h1

and

k1 ≥ 2βk2
h21

(i.e., Case 1 is true), then condition (31) is automatically satisfied. Finally, if h2 <
2k2
h1

and k1 <
2βk2
h21

(i.e., Case 2 is true), then the condition is (32). Combining these last three sentences

implies that f(t) ≥ 0 if and only if (30) holds.
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