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Abstract. In the aftermath of a disaster, emergency responders must transport a large

number of patients to medical facilities, using limited transportation resources (such

as ambulances). Decisions about where to send the patients are typically made in an

ad hoc manner by responders on the scene. Using a Markov decision process formula-

tion, we develop two heuristic policies that use limited information such as mean travel

times and congestion levels to determine (a) how to allocate ambulances to patient loca-

tions and (b) which medical facility should be the destination for those ambulances. In

a simulation study, we incorporate patient survival rates and service times for different

types of traumatic injuries, and show that the proposed heuristics can provide substantial

improvement in the expected number of survivors compared to the common practice of

transporting to the nearest facility, even when the decision maker has only limited up-to-

date information about the system state. In particular, a myopic approach that considers

only what is best for the next patient to be transported increases the expected number of

survivors in almost all scenarios considered. Using a more sophisticated one-step policy

improvement approach provides further improvement when the event involves patients

who do not deteriorate rapidly, especially when the transportation is not the bottleneck

and the casualties are spread over many locations. We demonstrate the effectiveness of the

proposed heuristics on a case study of a hypothetical earthquake, where casualty data is

generated using computer software developed by the U.S. government.
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1. Introduction
Disasters or mass-casualty events can affect hundreds

of people and place a huge burden on emergency med-

ical services. In the aftermath of such events, the goal

of emergency response management is to ensure the

safety of the affected people and the timely treatment

of as many patients as possible. This requires several

complex decisions and periodically re-evaluating these

decisions based on changing system conditions such as

crowding at the treatment facilities. In this article, we

study how to distribute patients from areas affected by a dis-
aster tomedical facilities that participate in the response effort.
This dynamic decision-making problem, which is com-

monly called thepatient-distributionproblem (CDC2010),

arises in the aftermath of large-scale emergency events

affectingmultiple regions that are geographically sepa-

rated but close enough to be served by the same group

of treatment facilities (e.g., in the same urban area).

In most civilian settings, patient-distribution deci-

sions are made by the Emergency Medical Services

(EMS) transport officer, who acts under the authority

of the incident commander. This officer considers each

hospital’s medical capabilities, capacity or congestion

level, and distance from the scene when deciding

where to transport patients. Available information is

synthesized in an ad hoc manner to quickly clear

patients from the scene without overwhelming any

particular hospital to the extent possible. From our per-

sonal communication with emergency response par-

ticipants and planners in Indiana and North Carolina,

we learned that these ad hoc decisions vary widely

depending on the local protocol and the individual

incident. It appears that there is no national or regional

standard in the United States for selecting destination

hospitals for patients. While extensive guidelines for

field triage have been established and well-studied, the

authors of these guidelines have stated that “research

is needed that includes multiple sites, multiple EMS

agencies, trauma and nontrauma hospitals” and that

“[the] impact of geography on triage, [and] issues

regarding proximity to trauma centers. . . [are] poorly

understood” (Sasser et al. 2012, p. 15).

The importance of patient-distribution decisions has

also been noted in published literature. Larson et al.
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(2006) review the operational response to five emer-

gencies from 1989 to 2004, including two hurricanes,

the Oklahoma City bombing, an airline crash, and a

chemical attack on the Tokyo subway system. Among

these, the incident with the worst operational patient

distribution was the subway attack. In the aftermath

of this incident, due to the geographical dispersion

of patients, poor communication, and the lack of a

patient-distribution policy, some ambulances traveled

from hospital to hospital looking for available beds,

while others dropped victims off at nearby hospitals

with no consideration of bed availability, and still oth-

ers made the (sometimes incorrect) decision of travel-

ing to distant hospitals. Larson et al. (2006, p. 494) con-

clude that cities must establish procedures to “assign

victims to hospitals, taking into account the victims’

locations and conditions and the hospitals’ capacities.”

In the aftermath of a disaster, non-ambulatory pa-

tients with serious injuries require two types of re-

sources: (i) emergency vehicles such as ambulances or

helicopters for transportation and (ii) hospital resources

such as beds, medical personnel, and equipment for

treatment. The salient feature of the patient-distribution
problem is that there are enough patients requiring

transportation to hospitals at the same time that the

available treatment capacity at a single facility is not

enough to provide all of them with timely treatment.

As a result, the patient-distribution problem following

a disaster features two types of endogeneity not typi-

cally found together in existing models of emergency

medical services. First, because casualties arrive all at

once and transportation resources are limited, the deci-

sion of where to send a particular patient affects the

demand at future points in time (i.e., the number of

patients remaining on scene), unlike in existing EMS

models where future demand arrives independently of

the past. Second, because treatment resources are lim-

ited, the decision of where to send a particular patient

affects the available treatment capacity at future points

in time, which is not explicitly modeled in studies of

EMS operations.

Our goal is to develop dynamic decision rules for

distribution of non-ambulatory patients to treatment

facilities, accounting for congestion levels at the facil-

ities in addition to travel times and hospital capa-

bilities. We consider a general formulation of the

patient-distribution problem where the number of

non-ambulatory patients is sufficiently large that trans-

portation resources (such as emergency vehicles) and

hospital treatment resources (such as beds, person-

nel, and medical equipment) are limited, and hence

the location and numbers of patients and treatment

resourcesmust be taken into account.We build amath-

ematical model that explicitly accounts for the lim-

ited availability of these two types of resources, and

assumes that transportation and treatment times, and

hence the amount of time spent waiting for these

resources, are subject to uncertainty. In our model,

patients are characterized by their geographic loca-

tions, which determine the distribution of travel times

to receiving facilities.

After reviewing the literature in Section 2, we for-

mulate the patient-distribution problem as a Markov

decision process (MDP) in Section 3. We first obtain

some analytical characterizations for the optimal solu-

tion to this MDP. For example, we provide conditions

under which patients should be routed to the least

congested facility. Based on the structure of our MDP

formulation, we develop two policies that use travel

times, service rates, and state information to make

dynamic patient-distribution decisions (see Section 4).

Specifically, we use two strategies in developing these

policies, i.e., (i) a myopic strategy that optimizes the

decision for the next patient to be transported and

(ii) a policy improvement approach that has worked

well in the literature. We use a discrete-event simu-

lator to conduct a randomized simulation study that

gives insights into when each patient-distribution pol-

icy would be expected to work well (see Section 5).

Finally, we demonstrate the effectiveness of our pro-

posed patient-distribution policies on a case study

using data from a disaster simulator (see Section 6).

Proofs of all analytical results and additional technical

material are provided in an electronic companion.

2. Literature Review
Emergency vehicle allocation and routing problems in

the aftermath of a mass-casualty event have been stud-

ied in several recent articles. Gong and Batta (2007)

consider the problem of determining an initial static

allocation of ambulances to groups of patients in a

disaster and use deterministic optimization methods

to suggest an allocation that minimizes the total time

needed to evacuate all patients. Jotshi et al. (2009) con-

sider the problem of both allocating and routing emer-

gency vehicles in a disaster, using parameters such

as travel times and number of patients, which are

assigned weights by the user. In another relevant work,

Zayas-Cabán et al. (2013) develop policies to mobilize

ambulances from surrounding areas in response to a

mass-casualty incident and to allocate this additional

capacity among affected regions. The objective is to

clear the system as quickly as possible while keeping

the cost of moving vehicles under a certain budget.

Dean and Nair (2014) formulate a mixed-integer pro-

gram (MIP) for optimal patient transportation from a

single location. Mills et al. (2018) demonstrate the ben-

efit of sharing information about emergency depart-

ment and inpatient beds when assigning patients to

hospitals while also accounting for the probabilis-

tic need for inpatient resources. Our work differs

substantially from these four articles. Neither Gong

and Batta (2007) nor Zayas-Cabán et al. (2013) consider
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treatment capacity at the hospitals. Jotshi et al. (2009)

consider congestion at the receiving facilities, but they

assume that this (and other system state information) is

exogenous and independent of the decision on where

to send the patients.Mills et al. (2018) consider capacity

at the hospitals when making the patient-distribution

decision, but they assume the capacity is static and

they do not consider transportation resources to be lim-

ited. By contrast, we consider two types of resources

(transportation and hospital) and model the effects

of patient-distribution decisions on future resource

availability. Dean and Nair (2014) consider both trans-

portation and treatment capacity as endogenous to

the patient-distribution decisions, however they do not

consider any uncertainty in travel or treatment times.

Instead, they make all patient-distribution decisions

at once by solving an integer program. While such a

global optimization approach can be used to study dif-

ferent scenarios offline, it may not be a practical way to

make decisions at the scene of a disaster. This approach

requires substantial data entry at the time of the event,

and solving an integer program may yield a distribu-

tion policy that is not easy to implement.

There is also a vast literature on the daily operations

of EMS, but with a focus on ambulance location and

redeployment problems to optimize coverage for ran-

domly occurring calls; see, e.g., Ingolfsson et al. (2008),

Erkut et al. (2008), Maxwell et al. (2010), McLay and

Mayorga (2013), and Yue et al. (2012). In all of these

articles, ambulance requests arrive one at a time. For

example, in both Maxwell et al. (2010) and McLay and

Mayorga (2013), patients arrive according to a Poisson

process and are assigned to an ambulance, which is

thereafter busy for a random amount of time. Thus,

assignment decisions affect future resource availability,

but not future demand (which is independent). These

assumptions are appropriate for daily EMS operations,

where demand arises one patient at a time. Further-

more, since these papers are concerned with coverage,

none of them account for hospital congestion. How-

ever, in the aftermath of a disaster when many patients

arrive at once, both future demand (i.e., the number

of patients remaining at each location) and available

hospital capacity depend on the decision.

To our knowledge, there is no work in the literature

that studies the patient-distribution problem in daily

emergencies. The closest problem studied in this lit-

erature is the ambulance diversion problem; see Deo

and Gurvich (2011) and Allon et al. (2013). Ambulance

diversion occurswhen hospitals turn away ambulances

due to high patient loads. Both of these articles use

queueing systems to model congestion levels at hospi-

tals, but neither considers the scarcity of ambulances,

which is amore salient feature in disasters than in daily

emergencies. They also do not consider travel times

to hospitals, assuming they would be roughly equal,

although Deo and Gurvich (2011) suggest inclusion of

differing travel times as a future research direction.

Finally, we note that dynamic routing of customers

or jobs to servers is a well-studied problem in the

queueing literature. In the case where servers are

homogeneous, routing customers to the shortest queue

is optimal in many situations; see Hordĳk and Koole

(1992) for one such result, and Whitt (1986) for several

examples and counterexamples. A number of articles

have developed index policies for routing customers

in more complex systems, such as those with hetero-

geneous servers, impatient customers, or general delay

costs; see, e.g., van Mieghem (1995), Mandelbaum and

Stolyar (2004), Armony (2005), Glazebrook et al. (2009),

and Argon et al. (2009). These articles assume that cus-

tomers are routed to a server instantaneously, either

upon their arrival (after which they may wait in a

queue at their assigned server), or just before service

(after waiting in a single queue). In our problem, this

assumptionwould correspond to ambulances traveling

instantaneously to medical facilities and would elimi-

nate a feature that is essential for a realistic represen-

tation of the actual system. Hence, in our formulation,

transporting a patient to a medical facility takes time

and requires the allocation of a limited resource.

We conclude this section by returning to the patient-

distribution problem in the aftermath of a disaster. If

transportation resources are limited but hospital treat-

ment resources are not, prior models of mass-casualty

incident response could be appropriate. On the other

hand, if transportation is instantaneous but treatment

takes time and hospital resources are limited, classi-

cal queue-routing models could be applied. However,

to our knowledge, none of the existing literature pro-

vides a clear and practical way to solve the patient-

distribution problem when the number of patients is

large enough that both types of resources are limited.

3. Markov Decision Process
Formulation and Analysis

In this section, we formulate the problem under con-

sideration as an MDP. To focus on the fundamental

trade-off inherent to this problem and develop solu-

tion methods that can lead to heuristic policies (see

Section 4), we purposely abstract away from certain

features of the problem. We later conduct simula-

tion experiments to test the proposed methods under

much more general conditions where the simplifying

assumptions are relaxed (see Sections 5 and 6).

In our formulation, we consider a disaster with mul-

tiple casualty locations that are geographically sepa-

rated, and multiple receiving facilities such as major

hospitals. Denote the set of locations by L and the

set of facilities by F . Patients must be transported

using a transportation resource such as an ambulance.

Ambulances may be dedicated to one of the casualty

locations or they may be flexible (i.e., they can operate
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between any location and any facility). Let ni denote

the number of ambulances dedicated to location i ∈
L and n f

denote the number of flexible ambulances.

A resource assigned to location i ∈ L can transport

patients to facility j ∈ F with a travel time that is

exponentially distributed with rate τi j . Primarily for

tractability, we assume that the return travel is instan-

taneous. Once a patient reaches the facility, he or she

receives treatment from one of b j servers (which may

represent beds or medical teams), each of which pro-

vides service that takes an exponentially distributed

time with rate µ j . If there are more patients than

servers at the receiving facility, the remaining patients

wait in a queue. After completion of treatment of a

patient, the system earns a finite reward r j , which pos-

sibly depends on the facility j ∈ F where the patient

receives service. Thus, the rewards can be used to rep-

resent differences in quality or capability among the

facilities. The performance measure of interest is the

expected total discounted reward earned by the sys-

tem. (In the simplest case, all rewards can be set to

one, in which case the objective function reduces to the

expected discounted throughput.) By discounting the

rewards, we capture the diminishing benefits of medi-

cal treatments provided to the patients as the patients’

conditions deteriorate with time. For example, if r j rep-

resents the survival probability of a patient treated at

facility j, then the objective function corresponds to

the expected number of survivors. We seek an optimal

dynamic policy that will specify, for each state, the des-

tination of each dedicated resource, and the assigned

location and destination of each flexible resource.

Denote the system state by (W(t),X(t)) � (W
1
(t),

W
2
(t), . . . ,W|L |(t),X1

(t), . . . ,X |F |(t)),where Wi(t) is the
number of patients at location i ∈ L at time t, X j(t) is
the number of patients at facility j ∈ F at time t > 0,

and | · | denotes the cardinality of a set. The state space,

which we denote by S , is equivalent to �|L | ×�|F | ,
where � is the set of nonnegative integers. The

expected total discounted reward with discount rate

α > 0 is given by E[∫∞
0

e−αt r(X(t)) dt], where r(x) ≡∑
j∈F r j(b j ∧ x j)µ j and ∧ is the minimum operator.

We formulate this optimization problem as an MDP,

using uniformization (as in Lippmann 1975) with uni-

formization constant β ≡ ∑
j∈F µ j b j +

∑
i∈L

∑
j∈F τi j ·

(ni + n f ), and study the embedded discrete-time MDP.

For this problem it is sufficient to consider only station-

ary deterministic policies (see, e.g., theorem 6.2.10 in

Puterman1994).Wedenote the set of suchpolicies byP.

Let V(w, x) denote the maximum expected total dis-

counted reward that can be obtained by a policy in P
when the system starts in state (w, x) ∈S . We are inter-

ested in finding a policy in P that yields V(w, x). In
other words, for any initial state (w, x) ∈S , we want to

solve

max

π∈P
E
[∫ ∞

0

e−αt r(Xπ(t)) dt
����Wπ(0)�w,Xπ(0)� x

]
, (1)

where {Wπ(t), t > 0} and {Xπ(t), t > 0} aremultidimen-

sional stochastic processes representing the number of

patients at each location and facility, respectively, at

time t > 0 under policy π ∈P.

The decision variables are d � {di j , i ∈ L , j ∈ F },
where di j is the number of dedicated ambulances of

location i to be sent to facility j, and f � { fi j , i ∈ L ,
j ∈ F }, where fi j is the number of flexible ambulances

to be assigned to location i with destination j. These
variables must satisfy the constraints∑

j∈F
(di j + fi j) 6 wi ∀ i ∈L , (2)∑
j∈F

di j 6 ni ∀ i ∈L , (3)∑
i∈L

∑
j∈F

fi j 6 n f . (4)

Define A(w) to be the set of actions (d, f) that sat-

isfy (2)–(4). Then for (w, x) ∈ S , the optimality equa-

tions are

V(w,x)

�
1

α+ β

[∑
j∈F
µ j(b j ∧ x j)[r j +V(w,x−e j)−V(w,x)]

+ βV(w,x)+ max

(d, f)∈A(w)

{∑
i∈L

∑
j∈F
τi j(di j + fi j)

· [V(w−ei ,x+e j)−V(w,x)]
}]
. (5)

Throughout, ek is a vector with kth component equal

to one and all others equal to zero (the size of ek will

be clear from the context). In (5), the first summation

(involving µ j) computes the marginal expected reward

earned due to a service completion at the next epoch,

the term βV(w,x) is the uniformization term, and the

term inside the max operator computes the marginal

expected future reward due to a patient transfer from

location i to facility j at the next epoch.
We begin our analysis by considering the case where

the value function V( · ) is known, in which case we can

completely characterize the optimal decisions. Define

mw,x
i j � τi j(V(w − ei ,x + e j) − V(w,x)), for (w,x) ∈ S ,

i ∈L , and j ∈F . From (5), solving the following integer

program (with C a constant) yields the optimal action:

maximize

∑
i∈L

∑
j∈F

mw,x
i j (di j + fi j)+C

s.t. (2), (3), and (4). (6)

Proposition 1. Algorithm 1 returns an optimal solution
to (6) for given V( · ).
Algorithm 1 (Algorithm for obtaining the optimal policy,
given values of V( · ))
1: function FindPolicy({mw,x

i j },w, {ni},n f
)

2: for all i ∈L, j ∈F do di j←0, fi j←0
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3: list←{(i , j), i ∈L , j ∈F }
4: SortDescending (list,mw,x

i j )
B Sorts list in descending order of mw,x

i j .

5: for k �1 to Length(list) do
6: (i , j)← list[k]
7: while ∑

s∈F (dis + fis)<wi do

8: if ∑
s∈F dis < ni then di j← di j +1

9: else if ∑
r∈L

∑
s∈F frs < n f then fi j← fi j +1

10: else break
In Algorithm 1, ambulances are systematically as-

signed to routes (each route comprises one location and

one facility) in order of decreasing marginal reward

mw,x
i j , with priority given to assigning dedicated ambu-

lances. Given that this greedy-like algorithm can be

used to assign ambulances, we use this solution struc-

ture to design near optimal policies (in Section 4).

We continue our analysis by considering caseswhere

some simple policy, such as a “shortest-wait”, is opti-

mal, as in many queue-routing problems (see, e.g.,

Whitt 1986 and Hordĳk and Koole 1992). Incorpora-

tion of transportation times makes our problem differ-

ent frommanywell-studied problems. To demonstrate,

suppose that for two facilities j, l ∈ F , we have r j > rl ,

µ j > µl , b j > bl , and τk j > τkl for all k ∈L. Now, sup-

pose that for the current state, we have x j 6 xl . In this

case, facility j appears to be a better choice than facil-

ity l with respect to every single factor: It has a higher

reward, faster service, more servers, fewer patients

waiting, and a shorter travel time from every location.

Nonetheless, an optimal policy may send the next eli-

gible patient from a location to facility l. Example 1

demonstrates this phenomenon.

Example 1. Consider the example shown in Figure 1,

where µA � 8 per hour, µB � 6.5 per hour, bA � bB � 2,

rA � rB � 1, n
1
� n

2
� 1, n f � 1, and α � 0.7. (Note that

facility A is a “better” choice for both locations because

it is closer and faster than facility B.) We obtain the

optimal policy using the value iteration algorithm and

truncating the state space to 50 patients on each dimen-

sion; see Figure 2. We observe that ambulances may

be routed to facility B even when facility A has the

shorter queue (center plot of Figure 2(a))—indeed, we

Figure 1. An Example with Two Locations (1 and 2) and

Two Facilities (A and B)

1

2

7.5

15

15

20

BA

Note. Numbers on the arcs indicate the mean travel times (in min-

utes) between the locations and treatment facilities.

may route all ambulances to facility B, even when facil-

ity A has the shorter queue (all plots of Figure 2(b)).

This is because routing ambulances to facility A too fre-

quently would overwhelm it while leaving facility B at

risk of becoming idle. One can fill the queue at facility

A relatively “quickly” with the dedicated ambulance

from location 1, which has many patients available.

Therefore, when facility A has a sufficient number of

patients in its queue to keep it busy for a while, one can

afford to devote some of the transportation resources

to taking patients to facility B. Nevertheless, Figure 2(c)

shows that when the total number of patients at the

scene is smaller, then the intuition to send patients to

the better facility holds.

Unlike in Example 1, however, if any two facilities

are equivalent in terms of travel times, then as we next

state in Proposition 2, it is always optimal to choose

the one that is superior with respect to the other cri-

teria, which aligns more closely with our intuition on

queue routing problems. A situation in which no facil-

ity is better than the other in terms of travel times may

arise, for example, when all the patient locations are

in a remote area and facilities are in the same nearby

city (in this case, travel times may be roughly the same

regardless of which facility is chosen).

Proposition 2. Suppose that for two facilities j, l ∈ F , we
have r j > rl , µ j > µl , b j > bl , and τk j � τkl for all k ∈L. If
x j 6 xl , then V(w,x+e j)>V(w,x+el), for all (w,x) ∈S .
In our model, each patient’s total delay consists of

scene waiting time, transportation time, hospital wait-

ing time, and treatment time.We now turn our analysis

to optimal policies that result from simplifying some

aspect of this structure. In particular, we study the case

wherein there is no waiting at the hospitals, which is

equivalent to assuming that the number of servers b j is

sufficiently large that b j ∧ x j � x j for all possible values

of x j , j ∈F . In this case, the expected marginal reward

mw,x
i j has the following structure:

Proposition 3. Suppose that b j is sufficiently large that
b j ∧ x j � x j for all possible values of x j and all j ∈ F .
Then mw,x

i j � τi j(r jµ j/(α + µ j) − κi(w)), where κi(w) > 0

does not depend on x or j. Furthermore, for all i ∈ L,
κi(w) < max j∈F {r jµ j/(µ j + α)}[(maxl∈F τil(n f + ni))/
(maxl∈F τil(n f + ni)+α)]wi .

Proposition 3 shows that in the absence of hospital

waiting, the index policy used in Algorithm 1 chooses

location—facility pairs according to mw,x
i j , which is

inversely proportional to the mean travel time τ−1

i j ,

directly proportional to the reward r j , and directly pro-

portional to µ j/(µ j +α), which accounts for differences

in service rate. This index ismodulated by κi(w), which

depends on the number of patients remaining to be

transported and diminishes exponentially in the num-

ber of patients. Therefore, when the number of patients
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Figure 2. Optimal Policy for Example 1 When There Are (a) 30 Patients at Location 1 and 5 Patients at Location 2, (b) 5

Patients at Location 1 and 30 Patients at Location 2; and (c) 10 Patients at Each Location
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Notes. The leftmost (center) plots show the optimal destination facility for dedicated ambulances from location 1 (2) as a function of the

number of patients at each facility. The rightmost plots show the optimal origin-destination (OD) pair for the flexible ambulance.

at a location is large, we can approximate mw,x
i j by

τi j r jµ j/(α+ µ j), which leads to a policy that is similar

to simply choosing the nearest facility when treatment

facilities are not too different in terms of service rate

and quality. On the other hand, facilities with large

κi(w) (which can happen when the number of patients

is smaller) are less likely to be selected by the flexi-

ble ambulances. This result is consistent with what we
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observe in Figure 2, even though the number of beds

in Example 1 is small.

4. Heuristic Policies
In Proposition 3, we showed that when there is no

hospital waiting, the optimal solution is an index pol-

icy independent of x, although it depends on w. With

such a policy, the decisionmaker will need information

only on one component of the state. Policies that are

w-independent but are x-dependent are in fact even

more desirable because in the aftermath of a disaster

obtaining information from the scene could be difficult

but the medical facilities are expected to provide infor-

mation to coordinators at the scene of a mass-casualty

incident. Therefore, in this section, we seek heuris-

tic policies that are w-independent but may depend

on x. We take two approaches to develop such heuristic

policies: a Myopic approach (Section 4.1) and a Policy
Improvement approach (Section 4.2). Because of possible

problems in communication infrastructure following a

disaster, information on the congestion level at the hos-

pitals may not be perfect. We address this issue in Sec-

tion 4.3 by providing a modification for our heuristics

in case of uncertain state information.

4.1. Myopic Approach
Consider the Myopic policy, which maximizes the ex-

pected reward of the patient reaching amedical facility

in the next decision epoch (if any). More specifically,

assume without loss of generality that the uniformiza-

tion constant β � 1. Then, if a patient from location i
is sent to facility j, the patient reaches facility j in

the next epoch with probability τi j , in which case she

becomes the (x j + 1)st patient. If x j + 16 b j , the patient

begins treatment immediately. Otherwise, she joins the

queue and her hospital waiting time is an Erlang ran-

dom variable with x j +1− b j phases, each having mean

1/(b jµ j), after which her service time is exponentially

distributed with mean 1/µ j . Hence, the expected dis-

counted reward for the current patient is r j[1/(1+α)] ·
[µ j/(µ j + α)][b jµ j/(b jµ j + α)](x j+1−b j )+

if she reaches

facility j (which occurs with probability τi j), and zero

otherwise. Because (1 + α)−1

is positive and does not

depend on i or j, we use the value

m̃x
i j � τi j r j

(
µ j

µ j +α

) ( b jµ j

b jµ j +α

) (x j+1−b j )+

(7)

as an approximation for mw,x
i j in Algorithm 1.

The resulting policy, which we call the Myopic pol-

icy, will yield the same set of actions for all values ofw;

it can also be written as a set of switching curves that

are linear in the number of waiting patients. From loca-

tion i ∈L, facility j ∈F is chosen by the Myopic policy

if and only if

(x j +1− b j)+ 6 ak j(xk +1− bk)++ ci jk , (8)

for all k ∈F \{ j}, where

ak j �
log(bkµk/(bkµk +α))
log(b jµ j/(b jµ j +α))

and ci jk �
log(τik rkµk(µ j +α)/(τi j r jµ j(µk +α)))

log(b jµ j/(b jµ j +α))
.

Expressing the heuristic in this linear form yields struc-

tural insights into the Myopic policy. In particular, for

a given i ∈L and k ∈F , min j∈F ci jk is a lower bound on

the incident size necessary for facility k to be chosen

for patients from location i. To demonstrate, in Exam-

ple 1, we have c
1AB � 16.6 and c

2AB � 7.2, implying that

patients from location 1 would be sent to facility B only

if the incident has at least 17 patients in total; the same

can be said of location 2 for incidents of 8 or more total

patients. Hence, in this scenario, theMyopic policy rec-

ommends a response effort involving only facility A,

when there are fewer than 8 total patients.

Finally, we can show that the Myopic policy is con-

sistent with Proposition 2 in that it chooses the optimal

action when the conditions of Proposition 2 are satis-

fied. It is also consistentwith Proposition 3 as it reduces

to the index τi j r jµ j/(µ j +α)when wi , i ∈L and b j , j ∈F
are large.

4.2. Policy Improvement Approach
TheMyopic policy is concernedwith only the very next

patient. In this section, we take the opposite approach

and develop a w-independent heuristic based on the

case where there are infinitely many patients. For trac-

tability, we also assume that servers are pooled at

each facility, i.e., facility j has a single server and

service times are exponentially distributed with rate

b jµ j . Define V∞(x) to be the expected total discounted

reward for any state x for this limiting case, which sat-

isfies the following optimality equation:

V∞(x)�
1

α+ β

[∑
j∈F
µ j b j[r j +V∞(x−e j)−V∞(x)]

+ βV∞(x)+ max

(d, f)∈B

{∑
i∈L

∑
j∈F
τi j(di j + fi j)

· [V∞(x+e j)−V∞(x)]
}]
, (9)

where B is the set of (d, f) that satisfy (3) and (4).

We will use a policy improvement approach for (9)

to obtain a w-independent heuristic. Using a pol-

icy improvement approach requires (i) calculating the

value function for a state-independent (static) policy in

closed form, and (ii) applying a single step of the policy

improvement algorithm to (9) to obtain an index policy.

Several studies from the queueing-control literature

successfully implemented this approach to develop

near-optimal policies (see, e.g., Krishnan 1990, Ansell

et al. 2003, and Argon et al. 2009).
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We use Bernoulli splitting to obtain an initial static

policy, where dedicated ambulances from location

i ∈L are sent to facility j ∈F independently with prob-

ability ρi j > 0 at each decision epoch, and flexible

ambulances are sent from location i ∈L to facility j ∈F
with probability θi j > 0.

Proposition 4. Let γ be a Bernoulli splitting policy having
probabilities {ρi j , θi j , i ∈L , j ∈F } and denote by Vγ

∞(x) the
value function associated with γ. Then we have

Vγ
∞(x+e j)−Vγ

∞(x)�
b jµ j r j

λ j
·

b jµ j −λ j +α− η j

b jµ j −λ j −α− η j

·
( b jµ j +λ j +α− η j

2λ j

) x j

, (10)

where λ j≡
∑

i∈L τi j(niρi j +n f θi j) and η j≡[(b jµ j +λ j +α)2
−4λ j b jµ j]1/2.

Applying one step of the policy improvement algo-

rithm corresponds to using (10) in place of V∞(x+e j)−
V∞(x) inside the maximum operator in (9). We call

the resulting policy the Policy Improvement Heuristic
(PIH), which is implemented using m̂x

i j � τi j(V
γ
∞(x+ e j)

− Vγ
∞(x)) in place of mw,x

i j in Algorithm 1. Like the

Myopic policy, the PIH will yield the same set of

actions for all values of w; it can also be written as

a set of linear switching curves. Unlike the Myopic

policy, PIH depends on an initial static policy γ. In
Section EC.2 of the electronic companion, we describe

three such initial static policies; the simplest of the

three (which we use in our simulation experiments of

Section 5) uses a greedy algorithm to assign routing

probabilities ρi j and θi j in decreasing order of index

τi j r j exp(−α/τi j), which is based on the objective func-

tion of a reward-maximizing fluid approximation.

4.3. Modified Heuristics for Uncertain
State Information

Until now, we assumed that state information about

congestion at each facility (i.e., x) is known at every

decision epoch for implementation of the proposed

heuristics. While this information is simple to collect

at each facility, it may not be easy for responders on

the scene to obtain this information continuously, or

the information that is transmitted might not be accu-

rate. We now demonstrate how the Myopic policy and

PIH can be modified to incorporate uncertain state

information.

Let Λ j be a random variable denoting the decision

maker’s belief about the number of patients at facility

j ∈F . Then, we modify the Myopic and PIH policies to

use the indices

τi j r j

(
µ j

µ j +α

)
E
[( b jµ j

b jµ j +α

) (Λ j+1−b j )+ ]
(11)

and

τi j b jµ j r j

λ j

( b jµ j −λ j +α− η j

b jµ j −λ j −α− η j

)
·E

[( b jµ j +λ j +α− η j

2λ j

)Λ j
]
, (12)

respectively. Whether (11) and (12) can be further sim-

plified depends on the distribution ofΛ j . In the specific

case of intermittent status updates (i.e., state informa-

tion is correct but it is obtained only sporadically), we

develop an approximation that can be used as long as

the decision maker keeps track of the following: (i) the

state of each facility at the last status update {x j , j ∈F },
(ii) the number of patients sent to each facility since the

last status update, which we denote by {y j , j ∈F }, and
(iii) the amount of time since the last status update,

which we denote by s > 0. The decision maker then

can approximate the current state of each facility as

Λ j � (x j + y j −ψ j(s))+, where ψ j(s) is a Poisson random

variable with mean b jµ j s. Note that ψ j(s) is the num-

ber of potential departures at facility j ∈F during a time

period of length s if all beds are occupied, and is thus

an approximation for the number of departures from

facility j. In Section EC.4 of the electronic companion,

we demonstrate an application of this approximation.

5. Simulation Study
Solving our original MDP given by (5) numerically is

very time consuming even for a small number of loca-

tions and facilities; thus, it is difficult to compare the

heuristics to the optimal solution (5). Therefore, we first

conducted a numerical study using the infinite-patient

approximation, i.e., under the modeling assumptions

of Section 4.2, and found that PIH closely approxi-

mates the optimal policy, while the performance of the

Myopic policy depends heavily on α (results of this

study are presented in Section EC.3 of the electronic

companion). Although this is an encouraging conclu-

sion, we are more interested in the performance of the

heuristics under conditions that are more realistic than

those assumed by our mathematical models given in

Sections 3 and 4. Hence, we dedicated the remainder

of our numerical analysis to a simulation study, where

we relax the assumptions that ambulance travel times

and treatment times are exponentially distributed and

assignments are preemptive, and we explicitly model

both the forward and return travel of ambulances. We

also use a reward function based on patient surviv-

ability. In this section, we use a randomized study to

quantify the difference between the heuristics and cer-

tain baseline policies as the characteristics of problem

instances vary, and we gain insights into situations

where particular heuristics are most valuable. Later, in

Section 6, we use our simulation model to conduct a

realistic case study with data corresponding to a hypo-

thetical disaster.
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5.1. Problem Instances
Each generated problem instance corresponds to a

trauma-related mass-casualty event in an area that is

10 miles by 10 miles, resulting in three, four, or five

patient locations. Initial patient counts are generated

from a discrete Uniform distribution over {5,6, . . . ,75}.
Each location has one dedicated ambulance, which can

travel at an average speed of 40 mph, and there are two

flexible ambulances with the same speed. There are

three Level I or Level II trauma centers (TCs), two of

which are in the urban area and one of which is 15 to 30

miles outside the area. The presence of the outside TC

is important because it helps us observe the behavior of

our heuristics in determining how congested a nearby

facility must be before it should be bypassed. Distances

are calculated using the L1

-norm (Manhattan distance);

travel time from a location to a hospital (and vice versa)

has a lognormal distribution (Ingolfsson et al. 2008). By

varying the number of locations, number of patients at

each location, and location of the facilities, we induce

variability in the level of congestion on the system in

two dimensions: More patients mean more congestion

for both the ambulances and the treatment facilities,

while increased travel distance means more congestion

for ambulances. Therefore, some problem instances

naturally experience more scene waiting time while

others experiencemore hospital waiting time, allowing

us to examine the relative performance of each heuris-

tic under these different settings.

We considered two types of traumatic injuries that

result from a natural or man-made disaster, i.e., blunt
trauma (e.g., from falling or being struck by an object)

and penetrating trauma (e.g., from a firearm or explo-

sive device). We fit emergency department (ED) treat-

ment times by injury type and TC level (I or II)

using over 380,000 observations from the 2012National

Trauma Data Bank (NTDB) (American College of Sur-

geons 2012). Using SAS software, we fit distributions

commonly used to model the time taken to perform

a task—exponential, Weibull, Gamma, and lognormal

(Law 2007). The Lognormal distribution was the best

fit for blunt trauma, while the Exponential distribution

was the best fit for penetrating trauma. In this simula-

tion study, we set all rewards to one; hence the perfor-

mance measure of interest is the discounted through-

put. To determine discount rates, we examined data for

survival probability of blunt trauma and penetrating

trauma patients from Sacco et al. (2005, 2007). We aver-

aged the survival probability functions of the critical

patients and observed that an exponentially decreas-

ing function (of the form e−αt
) provided a good fit (root

mean squared error (RMSE) < 0.01). Using MATLAB,

we determined the best-fit α for each trauma type. As

expected, penetrating injuries had larger α, indicating
a higher level of urgency. We provide all the parameter

settings of our simulation setup in Table EC.5 of the

electronic companion.

5.2. Heuristics and Baseline Policies
Because of the practical difficulty in obtaining and im-

plementing an optimal policy that satisfies (5), our goal

is to compare the state-dependent heuristics of Sec-

tion 4 to some baseline policies. For bothMyopic policy

and PIH, we can determine the action without solving

an optimization problem, and both arew-independent,

which is practically advantageous. Because we relax

the assumption of instantaneous return time for ambu-

lances in our base model of Section 3, we modify the

dynamic heuristics so that when a flexible ambulance

drops off a patient at facility j ∈ F , it next travels to

location i ∈L with the largest index τi j maxk∈F m̃x
ik (for

Myopic) or τi j maxk∈F m̂x
ik (for PIH). That is, at the time

of dropoff, for each location, we compute the maxi-

mum index over all facilities (i.e., over k ∈ F in the

maximum operators), and thenwe scale each location’s

index by τi j , reflecting the travel time back to location i
from the current facility j. Then, when an ambulance

(dedicated or flexible) reaches a location i, the destina-
tion facility is determined by the index max j∈F m̃x

i j (for

Myopic) or max j∈F m̂x
i j (for PIH). Another modification

we have incorporated is that in the Bernoulli splitting

policy used to initialize PIH, we approximate λ j , the

arrival rate of patients to facility j, by
∑

i∈L[niρi jτi j/2+
n f θi j

∑
k∈F

∑
l∈L θlk(1/τi j +1/τik)−1]. Comparing this ex-

pression to the one in Proposition 4, it can be seen that

we doubled the total travel time for dedicated ambu-

lances and averaged the return travel time for flexible

ambulances over all locations to which a flexible ambu-

lance may be assigned.

As mentioned in Section 1, there is no specific

national or regional standard for selecting patients’

destinations, and the results may vary from one local-

ity to another and from one incident to another. As a

result of the lack of any standard policy with which

to compare our heuristics, we consider two baseline

policies: a baseline static (BLS) policy, where all ded-

icated ambulances take patients to the nearest facility
(i.e., with the largest τi j among all j ∈F ) and all flexible

ambulances are assigned to the fastest route (i.e., with

the largest τi j among all i ∈ L , j ∈ F ); and a baseline

dynamic (BLD) policy, where all patients are sent to

the facility that has the smallest time until service comple-
tion at the time they begin transportation (i.e., with the

smallest τ−1

i j + (b jµ j)−1(x j + 1− b j)+ + µ−1

j over j ∈ F for

dedicated ambulances and over i ∈L , j ∈F for flexible

ambulances). Similar to the proposed heuristics, BLD

sends a flexible ambulance completing transportation

at facility j ∈F to location i ∈L with the largest index

τi j/mink∈F {τ−1

ik + (bkµk)−1(xk +1− bk)++µ−1

k }. Note that

the BLD policy uses similar logic to the Myopic heuris-

tic. The BLS policy would maximize the discounted

throughput, if service at the facilities were instanta-

neous (since it would minimize the time to service

completion for the current patient, which would result
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in the ambulance being available for future patients as

soon as possible). On the other hand, the BLD policy

would be equivalent to sending a patient to the facility

with the least congestion if transportation were instan-

taneous (because in such a case, τ−1

i j � 0), a policy that

is optimal in many queue routing problems in the lit-

erature (see, e.g., Whitt 1986). Thus, each baseline pol-

icy represents a policy that would make sense if the

model were simplified by assuming that transportation

or treatment has infinite capacity and is infinitely fast,

and hence the baseline policies serve as useful points

of comparison for the heuristics.

5.3. Randomized Study Results
We varied the number of locations (three, four, and

five) and trauma type (blunt and penetrating), and

then randomly generated 300 problem instances for

each combination of number of locations and trauma

type as described in Section 5.1. In the randomized

study, we generated locations of the incidents and the

facilities within the urban area by a two-dimensional

Uniform random variate and the distance to the out-

lying facility by a Uniform random variate. Gener-

ated trauma centers are either Level I (with probability

0.58), with median 39 ED beds or Level II (with prob-

ability 0.42) with median 25 ED beds. These probabili-

ties for Level I and II trauma centers are obtained from

a national survey byMacKenzie andHoyt (2003), while

the numbers of beds are taken from Rivara et al. (2006).

We added variability to the number of beds for each

trauma center according to a Uniform random variate

with range 10, centered about the median. Utilization

of ED beds at a trauma center is very high during nor-

mal operations (MacKenzie and Hoyt 2003), and beds

for patients from a disaster would become available

over a period of time as patients in the ED would be

moved to create surge capacity (Hick et al. 2004, Peleg

and Kellermann 2009). In our simulation, 10% of beds

were available initially, and an additional 30% of them

Table 1. Simulation Results: Randomized Study

vs. Baseline static vs. Baseline dynamic

Trauma No. of

type locations Policy Min (%) Q1 (%) Med (%) Q3 (%) Max (%) # Sig Min (%) Q1 (%) Med (%) Q3 (%) Max (%) # Sig

Blunt 3 PIH −11 37 48 67 246 298 −23 2 4 7 28 259

Myopic 0 31 42 66 231 300 −12 −1 1 3 23 189

4 PIH 0 38 48 63 241 299 −9 3 4 6 18 292

Myopic 1 33 43 58 235 300 −7 0 2 3 12 230

5 PIH 0 17 45 56 242 300 0 3 4 6 11 300

Myopic 0 16 41 51 226 299 −9 1 2 4 8 261

Penetrating 3 PIH −60 6 28 51 201 239 −54 0 5 12 76 215

Myopic 0 20 35 56 192 300 −13 3 11 26 131 261

4 PIH −35 19 39 55 223 284 −20 3 6 11 53 259

Myopic 2 23 36 54 213 300 −7 3 6 12 90 268

5 PIH −14 17 38 51 215 297 −13 4 7 10 40 279

Myopic 1 19 35 50 200 300 −7 3 5 10 52 281

became available over a two-hour period as existing

patients were discharged or moved to other facilities.

All simulations were written in C++ and run using

100 replications and common random numbers across

policies. In Table 1, we report the minimum (“Min”),

first quartile (“Q1”), median (“Med”), third quartile

(“Q3”), and maximum (“Max”) percentage improve-

ment in discounted number of patients treated by the

Myopic and PIH policies versus the two baseline poli-

cies across the 300 scenarios.We also report the number

of instances (out of 300) where each proposed heuristic

is better at the 0.05 statistical significance level (“# Sig”).

Table 1 shows that the heuristics resulting from our

analysis were valuable. Both heuristics were substan-

tially better than BLS in almost all instances, since

choosing the nearest hospital completely ignores con-

gestion. Furthermore, both heuristics provided a sta-

tistically significant improvement over BLD in most

instances, albeit by a smaller amount. The BLD policy

uses state information to dynamically assign patients

to hospitals, incorporating both travel times and con-

gestion at the hospital, and hence is expected to be

competitive. In Table 1, PIH and Myopic policies

appear to behave similarly, except under certain per-

formance measures and injury types. When patients

have blunt injuries, PIH provides a statistically bet-

ter improvement over the baseline policies in a larger

number of instances than Myopic. On the other hand,

Myopic has better worst-case performance under pen-

etrating injuries, especially for a small number of loca-

tions. We next examine the simulation results more

closely to determine whether certain characteristics of

problem instances predict the observed performance

improvement and the difference between PIH and

Myopic. We present results for the penetrating injury

type here; results for the blunt type are presented in

Section EC.5 of the electronic companion.

All dynamic heuristics considered (Myopic, PIH,

and BLD) improve patient distribution as compared
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Figure 3. (Color online) Boxplots of Improvement over the BLS (Nearest Facility) Policy by Number of Facilities Used Under

the Nearest Facility Policy (Penetrating Injury)
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to BLS (nearest facility) by striking a balance between

transporting patients to a nearby facility (which uses

transportation resources efficiently) and transporting

patients to a facility with a short wait (which uses treat-

ment resources efficiently). This improvement com-

pared to the BLS is highly dependent on the geographic

distribution of the locations and facilities, specifically,

by how many facilities are ever used under BLS. We

found that when all locations share a single nearest

facility, dynamic policies provide over 100% improve-

ment on the median problem instance, while when all

three facilities are used by the nearest facility policy,

the performance improvement is usually much smaller

though still significant, with the median around 10%

(see Figure 3, which shows the difference between the

dynamic heuristics and the nearest facility policy in

the randomized study). Controlling for this effect, we

see that when the location distribution is geographi-

cally unbalanced (i.e., not all facilities are used in the

nearest facility policy), the performance improvement

is also strongly affected by the distance to the facil-

ities. Dynamic policies perform better compared to

BLS when the average distance to the farthest facil-

ity is shorter (see Figure 4). For penetrating injuries,

one extra mile distance is associated with a reduction

of approximately 3.0 (2.1) percentage points in perfor-

mance improvement for PIH over BLS when 1 (2) facil-

ities are used under the nearest facility policy. The dis-

tance effect appears to be insignificant when all three

facilities are used by the nearest facility policy. We also

observe that BLD is the most affected by the mean dis-

tance among all three dynamic policies.

Examining Table 1 and Figures 3 and 4, we observe

that Myopic and PIH perform somewhat similarly in

general. However, in individual instances, the relative

performance of these two policies may vary widely.

In Figure 5, we see that PIH performs better than

Myopic when the average distance to the nearest facil-

ity is small, but Myopic performs better when the

average distance to the nearest facility is large. This

effect becomes more pronounced with fewer locations

(in fact, it is statistically insignificant for blunt injuries

when there are five locations). As the mean distance

to the nearest facility becomes larger, scene waiting

time takes a greater proportion of the total delay as

compared to hospital waiting time. Moreover, because

the number of locations is a proxy for the number of

patients (since the number of patients is drawn from

the same distribution for each location), when there

are fewer locations (and thus fewer patients), hospi-

tal waiting time makes up a smaller proportion of the

total delay. A similar conclusion can be made when

PIH is compared with BLD (see Figure 6). This obser-

vation makes sense because PIH uses a more sophisti-

catedmodel of queue waiting for future patients, while

Myopic and BLD consider the waiting time of only the

current patient. This effect ismuch stronger for the pen-

etrating injury type than the blunt injury type. An intu-

itive explanation would be that when patients deterio-

rate rapidly (as in the case of penetrating injuries) and

the travel times are longer, discounted rewards from

future patients are smaller, and hence, a policy that acts

myopically with respect to the current patient would

be expected to perform well.

5.4. Robustness Checks
We conducted four robustness checks to verify that

the main insights of the simulation study hold over

a variety of different scenarios. One of the benefits of

our proposed heuristics is that they can be applied in
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Figure 4. (Color online) Improvement over BLS (Nearest Facility) Policy by Distance to Farthest Facility (Penetrating Injury)

PIH vs. BLS
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Notes. Lines labeled as “Fit” are computed using least-squares regression. Fitted line slope is statistically significant at the 0.05 level for all

cases with one or two unique nearest facilities.

scenarios with limited state updates, as in Section 4.3.

As part of our robustness checks, we repeated the

entire randomized study with state updates according

to a Poisson process, with four, two, or zero updates

per hour, with all dynamic policies using the same

state information. Table 2 shows the results when there

are no state updates after time zero (details of this

Figure 5. (Color online) Percent Improvement Using PIH vs. Myopic by Distance to Nearest Facility (Penetrating Injury)
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experiment and additional results for intermittent state

updates are given in Section EC.4 in the electronic com-

panion). We observed that the Myopic heuristic and

PIH are both robust to limited state updates. Specif-

ically, the performance of the two proposed policies

against the BLS policy is slightly worse compared

to Table 1, but the performance against the baseline
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Figure 6. (Color online) Percent Improvement Using PIH vs. BLD by Distance to Nearest Facility (Penetrating Injury)

PIH vs. BLD—3 locations PIH vs. BLD—4 locations PIH vs. BLD—5 locations
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Notes. Lines labeled as “Fit” are computed using least-squares regression. Fitted line slope is statistically significant at the 0.05 level for all

cases.

dynamic policy is better, which implies that BLD is

not as robust to limited state updates. In particular,

the median improvement of PIH over BLD is two to

three times as high in the absence of state updates than

with perfect information, indicating a degradation in

the performance of the BLD policy when accurate state

information is not available.

We also repeated the randomized experiments by

doubling the number of flexible and dedicated ambu-

lances and observed that both Myopic and PIH pro-

vide even slightly better performance than in the case

with the original setup (see Table EC.7 in the elec-

tronic companion). One difference was that with more

ambulances, PIH provided consistently better perfor-

mance thanMyopic in terms of the number of instances

that had significant improvement (see Figure EC.5 in

the electronic companion). This result is similar to our

previous observation that PIH performed better than

Table 2. Simulation Results for Modified Heuristics with No Information Updates After Time Zero

vs. Baseline static vs. Baseline dynamic

Trauma No. of

type locations Policy Min (%) Q1 (%) Med (%) Q3 (%) Max (%) # Sig Min (%) Q1 (%) Med (%) Q3 (%) Max (%) # Sig

Blunt 3 PIH −8 32 41 67 214 290 −8 4 12 21 58 249

Myopic −5 16 31 52 195 290 −27 −5 1 8 47 161

4 PIH −6 32 41 55 233 278 −9 2 10 19 57 238

Myopic −7 13 29 48 209 289 −26 −4 2 8 43 171

5 PIH −8 10 39 50 228 253 −8 1 9 18 49 226

Myopic −8 8 20 42 172 282 −23 −5 2 7 36 180

Penetrating 3 PIH −61 15 26 46 186 272 −52 3 11 18 60 240

Myopic −5 11 24 43 173 291 −20 0 7 16 61 217

4 PIH −7 21 32 51 211 283 −10 6 14 23 61 266

Myopic −8 10 23 44 182 294 −18 −1 7 17 47 211

5 PIH −12 13 33 46 206 265 −17 7 16 26 62 248

Myopic −9 7 17 36 150 285 −28 −1 6 15 47 211

Myopic when travel times were relatively short, and

suggests that overall transportation capacity (depend-

ing on the number of ambulances and travel time dis-

tributions) is a factor in choice of a preferred heuris-

tic. To study the effect of travel time variability, we

repeated the entire randomized study, reducing the

coefficient of variation of travel times by half, which

did not change any of the results in a meaningful way

(see Table EC.8 in the electronic companion).We finally

repeated the same suite of simulation experiments pre-

sented in Section 5.3 with a small number of patients,

uniformly drawn over {5,6, . . . ,15} per location. With

a smaller number of patients, there is less room for

improvement because the system is not so congested

(see Table EC.9 in the electronic companion). However,

we still observed substantial improvement except in

the case of blunt injury, where Myopic did not result

in significant improvement over BLD in the majority
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of instances. This suggests that when the number of

patients is small, careful design of a dynamic policy

(such as PIH) is required to achieve improvement over

a simple baseline policy.

6. Case Study: Earthquake in
San Francisco, CA

To demonstrate the effectiveness of our heuristic poli-

cies and to verify the insights gained from our ran-

domized study in Section 5, we developed a case

study using HAZUS-MH software, which is pub-

lished by the U.S. government (Federal Emergency

Management Agency 2016). HAZUS-MH uses pub-

licly available data along with geographic informa-

tion to estimate direct and indirect losses from haz-

ards including earthquakes, hurricanes, and floods,

and maps the results on a geographic information sys-

tem (GIS) platform. For example, the map shown in

Figure 7 was generated by the HAZUS-MH software

when running our case study problem instance.

We chose San Francisco, California, for our case

study for several reasons: (i) San Francisco is prone

to earthquakes, which can be modeled with HAZUS-

MH; (ii) San Francisco has 10 hospitals with EDs that

are capable of treating earthquake patients (making

the decision problem highly complex); and (iii) high-

quality data about ED capacities and capabilities is

available from the State of California (California Office

of StatewideHealth Planning andDevelopment 2016).

We used HAZUS-MH to generate casualty estimates

for 194 census tracts in San Francisco, assuming an

Figure 7. (Color online) Distribution of Patients at Residential Buildings Under an Earthquake Scenario, City of

San Francisco

Source. HAZUS-MH software (Federal Emergency Management Agency 2016).

Notes. Darker colors indicate census tracts with greater numbers of patients. Black dots indicate hospitals with EDs suitable for receiving

patients.

earthquake of magnitude 7.0 occurred 60 miles south

of the city (at the approximate location of amajor earth-

quake that occurred in 1989) on a weekday at 2 p.m. The

scenario generated 488 critically injured patients who

would require transportation by ambulance. To gener-

ate travel times, we assumed the patients are clustered

at the geographic center of each census tract, as iden-

tified in the GIS software. We used the Google Maps

application programming interface (API) to obtain

best-case, typical, andworst-case estimates of the travel

time from each cluster to each of the ten hospitals on a

weekday at 2 p.m. Since a more detailed travel time dis-

tribution was not available, the travel times generated

from Google Maps were interpreted as parameteriz-

ing a triangular distribution in accordance with com-

mon practice in simulation studies (Law 2007, chap-

ter 6). We determined the hospital ED bed capacities

using the CA-OSHPDdata. Finally, we determined that

the San Francisco Fire Department has 56 ambulances

suitable for patient transport (California Emergency

Medical Services Agency 2018). In the first simula-

tion, we assumed all 56 ambulances were flexible; in

subsequent simulations, we dedicated 10, 20, and 30

ambulances to randomly selected locations to assess

the effect of ambulance flexibility. Other parameters

not discussed here were handled as in Section 5 with

the blunt injury mechanism since blunt injuries are

common in earthquakes (Gautschi et al. 2008), and each

simulation was repeated for 100 replications.

Table 3 shows that the proposed heuristics (PIH

and Myopic) lead to an increased expected number of

survivors over the baselines in a large-scale incident



Mills, Argon, and Ziya: Dynamic Patient Distribution in the Aftermath of a Disaster
730 Operations Research, 2018, vol. 66, no. 3, pp. 716–732, ©2018 INFORMS

Table 3. Comparison of Myopic Heuristic and PIH to the BLS and BLD Policies for the

San Francisco Earthquake Scenario

% improvement by

Expected number of

survivors (out of 488) Myopic vs. PIH vs.

No. of dedicated

ambulances Myopic PIH BLS BLD BLS BLD BLS BLD

0 358 362 336 244 6 47 8 48

10 343 346 323 229 6 50 7 51

20 319 323 303 205 5 55 7 57

30 287 291 276 173 4 66 6 69

Note. All differences between policies are statistically significant at the 0.05 level.

with many locations and facilities. One interesting

result from the case study is that the improvement is

greater over the BLD policy than over the BLS pol-

icy, a contrast to the randomized study. The case study

has two features that suggest that BLS, which sends

patients to the nearest facility, may not perform poorly.

First, there are a large number of facilities that are geo-

graphically proximate to the highly populated areas of

the city. Second, an earthquake is the type of disas-

ter that generates moderate numbers of patients over a

widespread area, rather than large number of patients

concentrated at a small number of locations (which

might occur, for example, in a coordinated terrorist

event). This means that the patients themselves are

geographically dispersed. Thus, sending each patient

to the nearest facility is unlikely to overwhelm one

facility while leaving another idle. This observation is

consistent with Figure 3, where we found more lim-

ited improvement over BLS when many facilities are

used. Nonetheless, despite the fact that BLS would be

expected to work well in such a scenario, the PIH still

provides an average of 5%–8% improvement, equiva-

lent to 15–26 lives, over BLS depending on the num-

ber of dedicated ambulances, which is both statistically

significant and meaningful.

As expected, fixing the location of additional ambu-

lances always results in a decrease in performance of

all policies, but the effects are different when mea-

sured against different baselines. In general, we see that

the dynamic policies (proposed and baseline) leverage

flexibility more than BLS, but the two proposed heuris-

tics continue their robust performance when more

ambulances are dedicated, while BLD is less robust.

This result is similar to our observation in Section 5

that BLD is less robust to intermittent state updates

than PIH and Myopic.

7. Conclusion
In the aftermath of a disaster, distributing patients to

medical facilities where they can receive care is a major

operational challenge. In this paper, we formulated the

patient-distribution problem as an MDP, which led to

several analytical and numerical results that could be

used in designing emergency response plans.

We provide strong evidence that dynamic policies

considering both the scene waiting time and the hospi-

tal waiting time can substantially improve the outcome

of a response effort compared with simply distributing

patients to the geographically nearest facility. However,

this information must be used carefully. Our work sug-

gests that it is especially important to use such dynamic

policies that take into account changing hospital con-

gestion levels when responding to disasters with multiple
incident locations that share one or two nearest facilities but
where none of the hospitals involved in the response effort are
too far away.
The dynamic policies proposed in this study (PIH

andMyopic) perform verywell in scenarios considered

in our simulation study. On the basis of observations

from the tested scenarios, we make the following rec-

ommendations:

1. To increase the expected number of patients

saved, we recommend at the very least using the

Myopic policy, which is straightforward to implement

and which performed better than the nearest facility

rule in almost all scenarios we tested.

2. For events where patients do not deteriorate very

rapidly, such as events resulting in blunt trauma,

further improvement may be achieved via the more

sophisticated PIH, especially when transportation is

not the bottleneck (because the round-trip travel time

to hospitals is not too long or because there are many

ambulances) and the patients are spread over many

incident locations. EMS providers are best positioned

to use their region-specific knowledge to determine

whether a particular incident meets these criteria. In

the paper, we provide one such exemplary and realistic

scenario that involves a hypothetical earthquake that

takes place in San Francisco, California.

The heuristics presented in this paper could be

incorporated into training exercises to help emer-

gency responders better understand their capability to

respond to specific disaster scenarios. The observations

and results of this paper could be also used to develop

rules of thumb as part of an emergency response plan.
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For example, the heuristics can be used to determine

the types of events for which distant hospitals should

be included in the response. Finally, we believe that

Myopic and PIH are simple enough to be implemented

in a decision support tool that could assist in real-time

response, provided at least some information on the

hospital congestion levels can be obtained. Although a

simple calculation would need to be performed, given

the ubiquity of portable technology such as mobile

phones, this could easily be automated.Moreover, such

devices would not necessarily require pervasive net-

work connectivity as we observed that our heuristic

policies are effective even with limited state updates.

Our policies are tailored to the situation with many

patients arriving at once. However, similar ideas could

be used in future work to develop patient-distribution

policies for daily emergencies with patients arriving

over a period of time in small numbers.

Although we demonstrated our policies on a realis-

tic simulated case study, further experimentation with

retrospective disaster data would increase understand-

ing of the impact of changes in the way patients are

distributed. Therefore, this article also highlights the

need for improved communication and reporting in

the aftermath of a disaster.
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