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Abstract. For a queueing system with multiple customer types differing in service-time
distributions and waiting costs, it is well known that the cµ-rule is optimal if costs for
waiting are incurred linearly with time. In this paper, we seek to identify policies that
minimize the long-run average cost under nonlinear waiting cost functions within the set
of fixed priority policies that only use the type identities of customers independently of the
system state. For a single-server queueing system with Poisson arrivals and two or more
customer types, we first show that some form of the cµ-rule holds with the caveat that
the indices are complex, depending on the arrival rate, higher moments of service time,
and proportions of customer types. Under quadratic cost functions, we provide a set of
conditions that determine whether to give priority to one type over the other or not to give
priority but serve them according to first-come, first-served (FCFS). These conditions lead
to useful insights into when strict (and fixed) priority policies should be preferred over
FCFS and when they should be avoided. For example, we find that, when traffic is heavy,
service times are highly variable, and the customer types are not heterogenous, so then
prioritizing one type over the other (especially a proportionally dominant type) would be
worse than not assigning any priority. By means of a numerical study, we generate further
insights into more specific conditions under which fixed priority policies can be considered
as an alternative to FCFS.
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1. Introduction
Manyservice systems prioritize their customers based
on customer characteristics, such as expected service
time and value to the system, in addition to their ar-
rival times to the system. For example, patients ar-
riving at the emergency department of a hospital are
first triaged, that is, assigned a criticality level, and
prioritized based on their triage category and arrival
order. Another example is call centers, at which cus-
tomers who have premier membership status are given
priority for order of service. A natural framework for
analyzing such systems has been through modeling
them as queueing systems, and over the last 60 years,
numerous articles have been published on how cus-
tomers in a queueing system should be prioritized.

Despite significant progress, however, this litera-
ture still has important gaps from both academic and
practical points of view largely because of the as-
sumptions imposed on thewaiting costs for analytical
tractability. Specifically, an overwhelming propor-
tion of prior work assumes that the cost of waiting

for a customer is a linear function of the customer’s
waiting time, an assumption that is not likely to hold
for many systems. For example, the optimality of the
well-known cμ-rule has been established under a
variety of conditions but all under the restriction that
waiting costs are linear (see Cox and Smith 1961 for
the article that started this literature and see Section 2
for more on the cμ-rule). On the other hand, the work
that considers the possibility of nonlinear waiting
costs imposes some other restrictions on the system,
such as the requirement that the system operate under
heavy traffic and the waiting cost function be convex.
More importantly, the policies proposed (e.g., the gen-
eralized cμ-rule by Van Mieghem 1995) are somewhat
sophisticated, requiring the system to keep track of
the queue waiting time of each customer and to have
complete knowledge of the waiting cost function,
which may pose a challenge in practice.
Although prioritization is prevalent in practice, in

many cases, the policies in place are not based on care-
ful statistical estimation of the waiting cost functions
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and are mostly based on some rough analysis of
limited data and the service providers’ past experi-
ence and beliefs about who needs the service more
urgently or whose long wait would be more detri-
mental for the system. For example, prioritization
of patients in emergency departments or in the af-
termath of mass-casualty events is very common in
practice, yet the precise nature of the effect of pas-
sage of time on patient survival, which can be seen
as waiting cost, is not well understood (see Sacco
et al. (2005), Jenkins et al. 2008, and the discussion
on survival probability functions in Sun et al. 2017).
Similarly, in other settings, such as healthcare clinics
and call centers, there is very limited work on the
estimation of waiting costs. Nevertheless, this does
not stop providers from implementing prioritiza-
tion policies that they believe to be improving system
performance. They also usually stick with simple pol-
icies, such as classifying customers into a few groups
and prioritizing one group over the other without
taking into account the state of the customers. In this
paper, we call such a policy a fixed priority policy be-
cause the priority order assigned to each customer
type does not change with time.

Given that waiting cost functions are not known
precisely, choosing a fixed priority policy as opposed
to dynamically prioritizing customers based on ex-
act cost information (if one needs to be chosen) is
reasonable. But the question remains as to whether
fixed prioritization makes sense in the first place. The
theory supports prioritization among classes when
waiting costs are linear functions of time, but what
if the waiting costs are not linear? When is there at
least some justification for taking the risk of using
prioritization between classes and thereby possibly
alienating customers rather than using a standard
first-come, first-served (FCFS) policy, which is at least
largely perceived to be fair? A provider that uses
prioritization without knowing the precise form of
the waiting cost functions is, in fact, implicitly as-
suming a certain relationship between the waiting
cost functions for different classes. But what are these
implicit assumptions? One of the two main goals of
this article is to provide some answers to these ques-
tions, which we do by comparing the performance of
applying FCFS across different types with those of
assigning fixed priorities under cost functions that are
not necessarily linear.

The second goal of this article is to provide some
managerial insights into the type of conditions that
would favor a particular strict priority policy or FCFS
over other fixed priority policies. (In this paper, a
strict priority policy is a fixed priority policy under
which there is at least one type that is prioritized over
others under all circumstances.) Although service pro-
viders might find it difficult to estimate the waiting

cost functions precisely, theymight have a good sense
of the general structure of the function (convex, con-
cave, quadratic, etc.). Thus, itwould be useful to know,
assuming that the cost functions have a particular
structure (but not knowing the functions precisely),
whether any one of the policies would stand out by
being the best choice under a larger or more realistic
set of cost parameter values than the others and
whether the policy that stands out depends on system
conditions, such as traffic intensity. For example, if a
linear cost model appears to be appropriate for most
customers but a quadratic cost function for one par-
ticular class, would any one of the policies stand out as
more likely to be better than the others? Would the
answer depend on the traffic intensity on the system?
How about the service time variability?
In the pursuit of these goals, we analyze an M/G/1

queueing systemwith two ormore types of customers
and each type characterized by a service time dis-
tribution and a waiting cost function, in which the
waiting cost function for at least one type is nonlinear.
The performance measure of interest is the long-run
average cost, and hence, priority policies that provide
a smaller performance measure are better. Following a
reviewof the relevant literature in Section 2, we provide
more details of our stylized model in Section 3.
Our theoretical analysis starts with a set of condi-

tions that determine the order between three fixed
priority policies that differ only in the priority or-
ders of two types of customers under a general cost
structure; see Section 4. Although these conditions
may not be any simpler than directly comparing long-
run average costs under competing fixed priority
policies, they demonstrate that the comparison fol-
lows some form of the famous cμ-rule. In Section 5, we
continue our theoretical analysis by taking a closer
look at the case with quadratic waiting cost functions,
which generates several interesting and useful in-
sights. For example, we find that the choice between
priority policies depends on the traffic intensity and
the proportion of each type in the population unlike in
the linear-cost case. We also provide results on how
the decision to prioritize or not changes with the
composition of the population and traffic intensity.
To further strengthen these insights, we study the
case with partial information on the waiting cost
functions in Section 6 and present results of a nu-
merical study in Section 7. We provide the most
important conclusions from this study in Section 8.
The proofs of our analytical results, some supple-
mental material, and tables of notation are provided
in the appendix.

2. Literature Review
Queueing systems in which certain classes of customers
have priority over others are called priority queues.
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The study of priority queues dates back to Cobham
(1954), who consider a single-server Markovian queue-
ing system (M/M/1) in which customers belong to
multiple priority classes and the service is non-
preemptive. For such a system, Cobham (1954) de-
rives expressions for the long-run average waiting
times in the queue for each priority class. This sem-
inal work was followed by Miller (1960) and Jaiswal
(1968), who advance the analysis of priority queues
further, for example, by providing Laplace–Stieltjes
transforms (LSTs) of the waiting time distributions
for M/G/1 priority queues and considering other
priority mechanisms, such as preemptive prioritiza-
tion. Others also consider probabilistic priority poli-
cies, in which priorities are assigned randomly among
different customer classes; for example, Katayama
and Takahashi (1992) and Jiang et al. (2002) pro-
vide approximations for the delay performance under
such policies.

When the waiting time of customers is penalized
linearly with time, Cox and Smith (1961) establish the
optimality of the well-known cμ-rule, which mini-
mizes the long-run average waiting cost in anM/G/1
queue with multiple priority classes. According to
the cμ-rule, customers with larger ciμi index are
assigned higher priority; ci is the waiting cost per
unit time, and μi is the service rate for type i cus-
tomers. Following this seminal paper, optimality of
the cμ-type policies is studied under various settings
by Kakalik and Little (1971), Klimov (1974, 1979),
Harrison (1975), Pinedo (1983), Nain (1989), Argon
and Ziya (2009), and Budhiraja et al. (2014) among
others, all under the assumption of linear cost func-
tions.We also refer readerswho are interested inmore
general conditions for the optimality of cμ-type pol-
icies to research on achievable regions for optimal
control of queueing systems, for example, Shanthikumar
and Yao (1992) and Bertsimas (1995).

Although this is not the first paper to consider
nonlinearwaiting costs in queueing systems, it would
be fair to say that the literature on the topic is scarce.
Within this literature, Haji and Newell (1971) show
that, when waiting cost functions are increasing and
convex, the optimal policy always serves customers
of the same type according to the FCFS discipline.
Later, VanMieghem (1995) proves that, whenwaiting
costs are convex in time, a generalized version of the
cμ-rule is asymptotically optimal under heavy traffic,
which is followed by a proof by Mandelbaum and
Stolyar (2004) that extends the heavy-traffic opti-
mality of the generalized cμ-rule to more general
settings. The generalized cμ-rule is a dynamic policy
that gives priority to the customer that has the largest
C′
i (t)μi value in the system at every service completion

epoch, in which Ci(t) is the cost of a type i customer
with a queue waiting time of t units and C′

i (t) is its

first-order derivative. Hence, to implement the gen-
eralized cμ-rule, one needs to keep track of the wait-
ing times of all customers in the system and know the
cost functions precisely.
Other relevant work that studies the optimal sched-

uling problem in priority queueing systems under
convex cost structures includes Ansell et al. (2003),
Glazebrook et al. (2003), and Bispo (2013). Assuming
that the holding cost is a function of the number of
customers in the system, these papers develop state-
dependent (dynamic) heuristic policies for single-
server queueing systems as an alternative to the
simpler generalized cμ-rule. Gurvich and Whitt (2009)
consider amultiserver,multiclass service systemwith
convex delay costs that are functions of the queue
length. They introduce a queue-and-idleness ratio
policy and show that this proposed policy would
reduce to the cμ-rule under linear holding costs and to
the generalized cμ-rule under strictly convex costs
and other regularity conditions. Finally, Ata and
Tongarlak (2013) and Larranaga et al. (2015) study
the dynamic control of multiclass queueing systems
with abandonments and proposed state-dependent
heuristic policies that would work under possibly
nonlinear waiting costs.

3. Model Description
Consider a single-server queueing system with K
types of customers, in which K is an integer and
2 ≤ K < ∞. Customers arrive to the system according
to a Poisson process with rate λ > 0, and each arriving
customer belongs to type i ∈ {1, 2, . . . ,K} with prob-
ability pi > 0, where

∑K
i�1 pi � 1, independently of the

arrival process. Service times for type i customers are
independent and identically distributed (i.i.d.) with
rate μi > 0 and nth moment τ(n)i > 0 for n ≥ 2. We
define μ ≡ 1/

∑K
i�1(pi/μi), τ(n) ≡ ∑K

i�1 piτ
(n)
i , ρi ≡ λpi/μi,

and ρ ≡ λ/μ, which we call the traffic intensity, and
we assume that ρ < 1 for stability. Each type i cus-
tomer incurs a waiting cost Ci(t) when its waiting
time in the queue is t ≥ 0. We assume that Ci(t) is first-
order differentiable and nondecreasing in t for fixed i.
(See Tables A.1, A.2, and A.3 in the Appendix for
tables of notation used throughout this paper.)
For such a queueing system, we consider a set of

policies Π that only includes nonidling and non-
preemptive queueing policies that assign a fixed
(deterministic) priority order to each type of cus-
tomer. More specifically, Π consists of policies under
which customers are ranked according to at most K
priority orders, and any policy π ∈ Π satisfies the
following properties: Let Kπ be the number of dis-
tinct priority orders under policy π. Without loss of
generality, let {1, 2, . . . ,Kπ} denote the set of priority
orders under policy π and assume that a smaller pri-
ority order represents a higher priority for service.
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(Different customer types may have the same priority
order, and hence, 1 ≤ Kπ ≤ K.) Priority orders are fixed
in the sense that they cannot be modified once the
system starts operating. A customer from a type with
priority order k > 1 cannot be taken into service when
there exists a customer in the system that has a pri-
ority order smaller than k. Policies in Π are also
nonidling and nonpreemptive in the sense that the
server does not idle as long as there is a customer in
the system and that service of a customer that has
been taken into service has to be completed without
any preemption before the servermoves on to serving
another customer.

For any policy π ∈ Π, define the long-run average
cost as

Cπ ≡ lim
t→∞

∑K
i�1

∑ni t( )
k�1 Ci V

π,x0
i, k

( )
t

(1)

(whenever the limit exists), where ni(t) is the number
of type i arrivals by time t and Vπ,x0

i,k is the waiting
time of the kth arriving type i customer under policy π
and initial state x0. Our objective is to compare pol-
icies in Π in terms of their long-run average waiting
costs in which smaller the long-run average cost, the
better the policy. Let Wπ

i denote the steady-state
waiting time of a type i customer under policy π.
We show in the appendix that the limit in (1) exists
and satisfies

Cπ � λ
∑K
i�1

piE Ci Wπ
i

( )[ ] (2)

if Assumption 1 holds.

Assumption 1. For π ∈ Π and all i � 1, 2, . . . , K,
E[⃒⃒Ci(Wπ

i )
⃒⃒] < ∞.

In this paper, we focus on policies in the subset
ΠF ⊂ Π, in which customers with the same priority
order are served according to FCFS. These policies
are of special interest because of their common use
in practice. Furthermore, if Ci(·) is a convex func-
tion (in the nonstrict sense) for all i � 1, 2, . . . ,K,
then it is sufficient to compare only policies in ΠF to
find an optimal policy within Π. More precisely,
proposition 1 inHaji andNewell (1971) implies that, if
Ci(t) is convex for all i, then, for any policy π ∈ Π \ΠF,
there exists a policy πF ∈ ΠF such that CπF ≤ Cπ.
(Proposition 1 in Haji and Newell (1971) assumes
two types but can be easily extended to more than
two types.)

We conclude this section bynoting thatAssumption 1
holds under some reasonable conditions for the cost
functions and service time distributions as long as
the queueing system is stable. As an example, see
Proposition 1 for polynomial cost functions.

Proposition 1. Suppose that, for type i ∈ {1, 2, . . . ,K}
customers, Ci(t) � ∑Ji

��1 c
(�)
i t�, where Ji < ∞ is the degree of

the polynomial function Ci(t) and c(�)i are some real numbers
such that C′

i (t) ≥ 0 for all t ≥ 0. If ρ < 1 and the first Ji + 1
moments of service times for all customers are finite, then
E[(Wγ

i )�] < ∞ for � � 1, 2, . . . , Ji and γ ∈ ΠF, and hence,
E[|Ci(Wγ

i )|] < ∞.

The condition on the moments of service times in
Proposition 1 holds for many common distributions,
such as exponential, gamma,Weibull, and lognormal.

4. Comparison Under General Cost
Functions: cμ-Rule Appears Again

We start the analysis by comparing policies in ΠF

under very general conditions for the waiting cost
functions (i.e., Assumption 1). To understand the
complexity of the problem, first consider the casewith
two types, under whichΠF has three policies: one that
prioritizes type 1 customers, another that prioritizes
type 2 customers, and a third one that prioritizes
neither type and follows FCFS for all customers.
When there are three or more types, the number of
ways of prioritizing and/or “pooling” different types
of customers increases dramatically. (In this paper,
pooling means grouping two or more customer types
and assigning the same priority order to the group.)
Specifically, there are 13 choices with three types of
customers: prioritize each individual type (six choices),
pool two types and assign priorities between the
pooled group and the single type (six choices), or pool
all three. Note that the number of policies in ΠF corre-
sponds to the ordered Bell number in number theory,
which can be approximated by K!/(2(log 2)K+1); see,
for example, Gross (1962). This shows that it becomes
much more difficult to compare all policies in ΠF as
K increases.
Although we are not able to compare all policies

in ΠF analytically (except for K � 2), as we show in
the remainder of this paper, we can compare policies
that are similar in that they share the same priority
order assignment for all types except for two. Such
comparisons not only provide a means to eliminate
suboptimal policies, but, more importantly, also gen-
erate insights into how priorities should be assigned
between two types, especially when the priority orders
of other types are predetermined.
To present our results, we start by picking a policy

π ∈ ΠF. Without loss of generality, we assume that
type i customers have priority order i under policy π
for i � 1, 2, . . . ,K. For fixed k ∈ {1, 2, . . . ,K − 1}, we
compare π with two of its variants. We first define
policy πk+1 to be a priority policy in which the pri-
ority orders of all types are the same as those under
policy π except that the priority orders of type k and
type k + 1 customers are switched. We also define
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policy π̄k to be a priority policy in which the priority
orders of all types of customers are the same as those
under policy π except that type k and type k + 1
customers are pooled and served according to FCFS.
Thus, policiesπk+1 and π̄k that are derived frompolicy
π treat all types the same way except for types k and
k + 1: policy πk+1 prioritizes type k + 1 customers over
type k, and π̄k does not differentiate between types k
and k + 1 customers in terms of priority. For nota-
tional convenience, we also define policy πk, which is
identical to policy π. Our next result provides nec-
essary and sufficient conditions for the comparison
of πk, πk+1, and π̄k under general cost structures.

Proposition 2. Suppose that Assumption 1 holds under
policies πk, πk+1, and π̄k for fixed k ∈ {1, 2, . . . ,K − 1}
and let

δ
γ1,γ2
i ≡ E Ci W

γ1
i

( )[ ] − E Ci W
γ2
i

( )[ ]
E Wγ1

i

[ ] − E Wγ2
i

[ ] , (3)

for i ∈ {k, k + 1}, γ1, γ2 ∈ {πk, πk+1, π̄k}, and γ1 �� γ2.
Then, we have

a. Cπk ≤ Cπ̄k if and only if δπk ,π̄k
k μk ≥ δπk ,π̄k

k+1 μk+1.
b. Cπk+1 ≤ Cπ̄k if and only if δπk+1,π̄k

k+1 μk+1 ≥ δπk+1,π̄k
k μk.

c. Cπk ≤ Cπk+1 if and only if δπk ,πk+1
k μk ≥ δπk ,πk+1

k+1 μk+1.
Proposition 2 is not difficult to prove as can be

seen in the appendix, but it has an elegant interpre-
tation: the ordering among long-run average costs
underπk,πk+1, and π̄k follows a generalized version of
the famous cμ-rule. To see this more clearly, note that
δ
γ1,γ2
i defined in (3) can also be expressed as δ

γ1,γ2
i �

E[C′
i (Uγ1,γ2

i )], where Uγ1,γ2
i is a random variable that

is defined by a probabilistic analogue of the mean
value theorem (see Remark A.1). In particular, Uγ1,γ2

i
can be considered as the “mean value” of steady-state
waiting times Wγ1

i and Wγ2
i . Thus, δγ1,γ2

i can be inter-
preted as the expectedmarginal change in cost for type i
customers when the policy switches from γ1 to γ2 or
vice versa. Then, parts (a) and (b) of Proposition 2
say that prioritizing type i customers over type j
customers for i, j ∈ {k, k + 1} and i �� j is better than
pooling them if and only if switching from policy π̄k
to πi results in a larger expected marginal decrease
in cost per unit service time for type i customers
than the expected marginal increase in cost per unit
service time for type j customers. Similarly, part (c) of
Proposition 2 says that prioritizing type k over type
k + 1 is better than the opposite if and only if switching
from policy πk+1 to πk results in a larger expected
marginal decrease in cost per unit service time for
type k customers than the expected marginal increase
in cost per unit service time for type k + 1.

As long as precise expressions for the cost func-
tions for the two types under comparison are known,
it is not difficult to numerically determine δ

γ1,γ2
i and,

thus, to identify the best policy within {πk, πk+1, π̄k},
which is ΠF itself for K � 2. Indeed, as we show in
Corollary A.1, we only need to compute δ

γ,π̄k
i for i ∈

{k, k + 1} and γ ∈ {πk, πk+1} to find the best policy
among πk, πk+1, and π̄k using Proposition 2. Hence,
in the rest of this paper, we simplify the notation
by letting δ

γ
i ≡ δ

γ,π̄k
i for i ∈ {k, k + 1} and γ ∈ {πk, πk+1}.

Furthermore, under certain assumptions on the struc-
ture of the waiting cost functions, it is possible to
obtain closed-form expressions for δγi as we demon-
strate for quadratic functions in Section 5. Finally,
note that the computation of δγi for i ∈ {k, k + 1} and
γ ∈ {πk, πk+1} does not require knowledge of cost
functions of other types, but only those of the two
types of customers we compare, which is practi-
cally appealing.

5. Comparison Under Quadratic
Cost Functions

Polynomial waiting cost functions—especially qua-
dratic costs—have been widely used in the study of
queueing systems with nonlinear waiting costs; see,
for example, Ata and Tongarlak (2013) and Parlar and
Sharafali (2014). These functions have been popular
not only because they are suitable for analysis, but
also because they fit well to the perceived cost of
waiting in several applications. For example, in a
recent empirical study, Ding et al. (2019) find that the
marginal waiting cost of critical patients (from the
decision makers’ perspective) at four large Canadian
emergency departments can be approximated by a
piece-wise linear increasing function. With this mo-
tivation, we focus on polynomial cost functionswith a
degree of at most two in the rest of this paper to derive
more insights into our main research question re-
garding when to assign priorities if waiting costs
are nonlinear.
To apply Proposition 2 to the quadratic cost case,

we need to define

Mγ
i ≡

E Wπ̄k
( )2[ ]

− E Wγ
i

( )2[ ]
E Wπ̄k[ ] − E Wγ

i

[ ] , (4)

for i ∈ {k, k + 1} and γ ∈ {πk, πk+1}. (We drop the sub-
script fromWπ̄k

i for i ∈ {k, k + 1} because Wπ̄k
k and Wπ̄k

k+1
are identical.) In words, Mγ

i represents the change
in second moments of steady-state waiting times of
type i customers per change in theirmean steady-state
waiting times by switching from priority policy γ to π̄k.
As can be seen in Proposition 3, we need Mγ

i to char-
acterize the best policy among πk, πk+1, and π̄k under
quadratic costs. Closed-form expressions of Mγ

i are
given in Equations (A.8) and (A.9) and show that Mγ

i
is a function of the arrival rate, proportions of cus-
tomer types, and first three moments of service times.
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Proposition 3. Suppose that Assumption 1 holds and, for
fixed k ∈ {1, 2, . . . ,K − 1} and i ∈ {k, k + 1}, cost functions
satisfy Ci(t) � c(2)i t2 + c(1)i t, where t ≥ 0 and c(1)i , c(2)i ≥ 0.
Then, δπi

i ≤ δ
πj

i for i, j ∈ {k, k + 1} and j �� i, where δ
γ
i �

c(2)i Mγ
i + c(1)i for γ ∈ {πk, πk+1}, and the inequality holds

strictly if and only if c(2)i > 0. Furthermore, the best policy
among πk, πk+1, and π̄k is characterized as follows:

a. If δπk
k μk > δπk

k+1μk+1, then πk is the best (and πk+1 is
the worst).

b. If δπk+1
k+1 μk+1 > δπk+1

k μk, then πk+1 is the best (and πk is
the worst).

c. Otherwise, that is, if δπk
k μk ≤ δπk

k+1μk+1 and δπk+1
k+1 μk+1 ≤

δπk+1
k μk, π̄k is the best.

Proposition 3 is a generalization of the classical
cμ-rule to the quadratic cost setting. (One can recover
the cμ-rule by setting c(2)i � 0 for all i � 1, 2, . . . ,K and
applying Proposition 3 multiple times.) Possibly the
most important difference from the classical cμ-rule
is that, in the quadratic cost case, prioritizing one
type or the other may be worse than not prioritizing.
(By the first statement of Proposition 3 on the strict
order between δπi

i and δ
πj

i and part (c), we know that
there is a nonempty region in which π̄k is the best.)
In particular, when there are only two types of cus-
tomers, this result suggests that FCFS can be better
than prioritizing either type under quadratic cost
functions although FCFS is suboptimal under linear
costs. The reason is that, when costs are linear, unlike
in the nonlinear case, each additional unit of waiting
adds the same amount to the total cost regardless
of how long the wait has been. Hence, in the case of
nonlinear costs, priority among customers should
depend not only on their types, but also on how long
they have waited. (This has been noted by others,
including Van Mieghem (1995).) Therefore, a fixed
deterministic policy that prioritizes one type over the
other can lead to excessive waits for the nonpriority
type, whereas this would not be the case in FCFS because
of the randomized order of arrivals of different types.
Proposition 3 also states that serving both types k and
k + 1 according to FCFS, that is, not giving priority
between types k and k + 1, is never the worst policy.
This can be best explained by the strict order between
δπi
i and δ

πj

i for i, j ∈ {k, k + 1} and i �� j because it implies
that the expected marginal decrease in cost for type i
by switching from π̄k to πi is (strictly) less than the
expected marginal increase in cost for the same type
by switching from π̄k toπj. In other words, when costs
are quadratic, the harm caused by giving lower pri-
ority to a type is more than the benefit gained by
prioritizing it in terms of its expected marginal cost.

To gain further insights, we next study the case in
which c(1)k μk � c(1)k+1μk+1, for example,when c(1)k � c(1)k+1 � 0.
(Argon et al. (2009) and Ata and Tongarlak (2013) are
examples ofwork that studies similar cost structures.)

Assumption 2. For k ∈ {1, 2, . . . ,K − 1} and i ∈ {k, k + 1},
we have Ci(t) � c(2)i t2 + c(1)i t, where c(1)i ≥ 0, c(2)i > 0 and
c(1)k μk � c(1)k+1μk+1.

Corollary 1. Under Assumptions 1 and 2, the best policy
among πk, πk+1, and π̄k is characterized as follows: πk+1 is
the best (and πk is the worst) if c

(2)
k μk/(c(2)k+1μk+1) < Rπk+1 ; πk

is the best (and πk+1 is the worst) if c(2)k μk/(c(2)k+1μk+1) > Rπk ;

and π̄k is the best if Rπk+1 ≤ c(2)k μk/(c(2)k+1μk+1) ≤ Rπk , where
Rγ ≡ Mγ

k+1/M
γ
k for γ ∈ {πk, πk+1} and Rπk+1 < Rπk . Fur-

thermore, Rπk+1 < 1 < Rπk if types k and k + 1 are identical
in terms of the first two moments of their service times.

Corollary 1 completely characterizes the best policy
among πk, πk+1, and π̄k for quadratic cost functions
with c(1)k μk � c(1)k+1μk+1. In particular, it states that πk is
the best if c(2)k μk is sufficiently larger than c(2)k+1μk+1, πk+1
is the best if c(2)k μk is sufficiently smaller than c(2)k+1μk+1,
and π̄k is the best if the values of c(2)k μk and c(2)k+1μk+1
are not significantly different. Note particularly the
nonempty optimality region for the pooled policy π̄k,
that is, where c(2)k μk/(c(2)k+1μk+1) ∈ [Rπk+1 ,Rπk ]. Using the
work conservation law (see, e.g., Kleinrock 1965), Rγ

can be interpreted as the ratio of changes in the second
moment of steady-state waiting times for type k + 1
customers versus type k customers when switching
from priority policy γ to π̄k adjusted by their re-
spective traffic intensity. Corollary 1 also implies that,
under quadratic cost functions, if all customers have
the same first and second moments of service times,
thenRπk+1 < 1 < Rπk for all k � 1, 2, . . . ,K − 1, andhence,
policies that give priority to customer typeswith smaller
values of c(2)i should not be considered.

5.1. Effects of System Parameters on Conditions
for Prioritization

In this section, we focus on the case with K � 2
and investigate how the intervals for c(2)k μk/(c(2)k+1μk+1)
given in Corollary 1, over which one policy is better
than the others, change with system parameters such
as the arrival rate. Such an analysis leads to insights
into the question of when to prioritize and is espe-
cially useful if the service provider has reason to
believe that quadratic functions would accurately
capture the waiting costs but cannot determine c(2)k
and c(2)k+1 precisely.
More specifically, we study how the prioritization

decision for the case with two types of customers
changes with the traffic intensity ρ, proportion of
type 1 customers p1, and the service time distributions
under quadratic cost functions Ci(t) � c(2)i t2 for c(2)i > 0
and i ∈ {1, 2}. First, note that,when there are two types
of customers in the system,πi is the priority policy that
prioritizes type i ∈ {1, 2} customers, π̄1 corresponds
to FCFS, and ΠF � {π1, π2, FCFS}. Then, Corollary 1
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provides a complete characterization of the best policy in
ΠF: π1 is the best if c

(2)
1 μ1/(c(2)2 μ2) > Rπ1 , π2 is the best if

c(2)1 μ1/(c(2)2 μ2) < Rπ2 , and FCFS is the best otherwise.
We start by providing some numerical examples to
visually depict these optimality regions and how they
change with ρ (or, equivalently, with λ) and p1.

Figures 1 and 2 show how the optimal policy shifts
from π2 to FCFS first and then to π1 as c

(2)
1 μ1/(c(2)2 μ2)

increases in agreement with Corollary 1. (Figures 1
and 2 present the most representative plots from a
more detailed numerical study.) Furthermore, it ap-
pears from Figure 1 that the region in which FCFS is
the best policy enlarges as λ increases and that both
Rπ1 andRπ2 monotonically changewith λ, but they are
not necessarily increasing or decreasing in all cases.
(By the symmetry between the two types and the
rightmost plot in Figure 1, we know that there is also a
case in which both Rπ1 and Rπ2 increase with ρ.) We
also notice from Figure 2 that Rπ1 and Rπ2 do not
always change monotonically in p1 except when
all service times are i.i.d. In Propositions 4 and 5,

we prove some of these observations on the mono-
tonicity of Rπ1 and Rπ2 and also provide their limits in
heavy traffic.

Proposition 4.
a. Rπ1 increases in λ if τ(2)2 μ2 ≥ τ(2)1 μ1(1 − 2ρ1)/

(2 − 2ρ1).
b. Rπ2 decreases in λ if τ(2)1 μ1 ≥ τ(2)2 μ2(1 − 2ρ2)/

(2 − 2ρ2).
c. As λ → μ � (p1/μ1 + p2/μ2)−1, we have

Rπ1 → p1μ−1
1 + 2p2μ−1

2

p2μ−1
2

and

Rπ2 → p1μ−1
1

2p1μ−1
1 + p2μ−1

2
.

as λ → μ � ( p1/μ1 + p2/μ2)−1.

Proposition 5. When the first three moments of service
times are identical for all customers, Rπ1 and Rπ2 both in-
crease in p1 (and, hence, decrease in p2).

Figure 1. (Color online) Regions of Optimality for FCFS, π1, and π2 as a Function of ρ (or, Equivalently, λ) Under Exponential
Service Times and Quadratic Waiting Costs with Ci(t) � c(2)i t2 for t ≥ 0 and i ∈ {1, 2}

Figure 2. (Color online) Regions of Optimality for FCFS, π1, and π2 as a Function of p1 Under Exponential Service Times and
Quadratic Waiting Costs with Ci(t) � c(2)i t2 for t ≥ 0 and i ∈ {1, 2}
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Propositions 4 and 5 provide several useful insights
intowhen prioritization should be considered over FCFS
and when not. In the following, we provide an itemized
list of these insights; each item first states the insight
followed by how it is derived from Proposition 4 or 5.
Later, in Section 7.1, we observe through a numerical
study that most of these insights could be generalized
to systems with more than two customer types.

• If τ(2)i μi values for the two customer types are
relatively close, specifically, one is not more than
twice as large as the other, then the region in which
FCFS is the best gets larger as the traffic intensity
grows, and the optimality regions for the priority
policies get smaller: from parts (a) and (b) of
Proposition 4, if 1/2 < τ(2)1 μ1/(τ(2)2 μ2) < 2, then Rπ1

increases and Rπ2 decreases with λ.
• The region in which prioritizing the propor-

tionally dominant type is the best shrinks as the ar-
rival rate increases and the traffic intensity of that
type surpasses 1/2: if ρ1 ≥ 1/2 (ρ2 ≥ 1/2), then the
condition in part (a) ((b)) of Proposition 4 is auto-
matically satisfied, and hence, Rπ1 increases (Rπ2 de-
creases) with λ. This also can be observed in Figure 1.

• Under heavy traffic, the boundaries of opti-
mality regions depend only on customer mix in the
population and the first moment of service times: this
is immediate from Proposition 4(c) and is consistent
with heavy traffic analysis of other queueing sys-
tems in the literature with nonlinear penalties for
waiting. For example, see Van Mieghem (1995), Ata
and Tongarlak (2013), and Ata and Peng (2018), in
which order of policies depends on first-moment mea-
sures (such as service rates and/or abandonment rates)
and not on higher moments under heavy traffic.

• When the first threemoments of service times are
identical for the two types, as the proportion of one
type increases, the optimality region for giving pri-
ority to that type shrinks, and the optimality region
for prioritizing the other type enlarges: this directly
follows from Proposition 5 and can be also seen from
the leftmost plot in Figure 2.

• Under heavy traffic, if one type significantly
dominates the other in terms of proportion of pop-
ulation, then giving priority can only be justified for
the type with the smaller proportion, and that justi-
fication also requires that its c(2)i μi is at least twice as
large as that of the other type. Otherwise, it is better
to use FCFS: by Proposition 4(c), under heavy traffic,
Rπ1 → 2 andRπ2 → 0 as p1 → 0, whereasRπ1 → ∞ and
Rπ2 → 1/2 as p1 → 1. Hence, under heavy traffic, type i
customers should not be prioritized if the proportion
of this type is close to one; instead, the other type, that
is, type 3 − i, should be served first if c(2)3−iμ3−i > 2c(2)i μi,
and otherwise, FCFS should be applied.

In this section, we also compare the values of Rπ1

and Rπ2 under two different service time distributions

with the samemeans toobserve the effects of service time
distributions (or, equivalently, second moments in the
quadratic cost case). For γ ∈ {π1, π2}, let Rγ

exp and Rγ
det

denote the values of Rγ under exponential and de-
terministic service times for all customers, respectively.

Proposition 6.
a. Rπ1

exp ≥ Rπ1
det if and only if μ1 ≥ μ2(1 − ρ1)/(2 − ρ1).

b. Rπ2
exp ≤ Rπ2

det if and only if μ1 ≤ μ2(2 − ρ2)/(1 − ρ2).
Proposition 6 implies that, if μ2/μ1 ∈ ∼ (1 − ρ2)/(

(2 − ρ2),∼ (2 − ρ1)/(1 − ρ1) ∼), then Rπ2
exp ≤ Rπ2

det < Rπ1
det

≤ Rπ1
exp, and hence, when the mean service times are

not significantly different for the two types of cus-
tomers, FCFS is preferable for a wider range of values
of c(2)1 /c(2)2 under exponential service times than under
deterministic service times. This suggests that, when the
two types are not too different in terms of mean service
times, higher service timevariabilitymakes FCFSabetter
choice under a larger range of waiting cost scenarios.
When service times have higher variance, waiting times
also have higher variance regardless of whether FCFS
or a strict fixed priority policy is in place. Nevertheless,
becauseof the convexity of thewaiting cost functions, the
impact is larger on the strict priority policies because of
the longerwaits experiencedbyat least someof the lower
priority customers.
It is important to note, however, that, if mean

service times are sufficiently different between the
two types, lower variability might make prioritizing
the type with smaller mean service time more de-
sirable. Specifically, Proposition 6 also says that, if
one type is sufficiently faster to serve in the mean
sense, say, μ2/μ1 > (2 − ρ1)/(1 − ρ1), then Rπ2

exp ≤ Rπ2
det

and Rπ1
exp ≤ Rπ1

det, which implies that, under determin-
istic service times, π2 (prioritizing the faster type) is
preferred for awider range of values of c(2)1 /c(2)2 , and π1
(prioritizing the slower type) is preferred for a nar-
rower range of values of c(2)1 /c(2)2 than that under ex-
ponential service times.
We conclude this section with a summary of in-

sights that could be most useful to managers. Higher
arrival rates favor FCFS over strict priority policies,
and these priority policies are justifiable only if there
is a high level of heterogeneity between types (in
terms of cost parameters, first two moments of ser-
vice times, and proportions) under heavy traffic.
Moreover, under heavy traffic, if a strict fixed priority
is better than FCFS, then it must be the one that
gives priority to the type with a smaller proportion of
the customer population. Hence, when there are
concerns about heterogeneity among types or when
service times are suspected to be highly variable,
managers should be cautious about replacing FCFS
with strict priority policies in heavily loaded systems
with quadratic waiting costs.
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5.2. Could Prioritization Be a Fair Policy?
In this section, we discuss the implications of our
results on quadratic cost functions on the problem of
minimizing the variance of steady-state waiting times
when the mean service times for all customers are the
same but the variance and higher moments are pos-
sibly different. Minimization of variance of steady-
state waiting times has been of great interest in the
context of fairness in queueing systems. In particular,
Kingman (1962), Avi-Itzhak and Levy (2004), and
references therein use variance of waiting times as a
measure of fairness in a queueing system in that a
policy that has a smaller variance of waiting times is
regarded as a fairer policy. Kingman (1962) and
Vasicek (1977) prove that FCFS minimizes the vari-
ance of waiting times among all nonidling queueing
disciplines and, thus, is the “fairest” discipline for
various queueing systems with a single class of cus-
tomers. Avi-Itzhak and Levy (2004) propose a new
fairness measure that computes the expected number
of positions that a job is pushed ahead or backward
under a policy compared with FCFS and conclude
that, for G/G/c queues with c parallel servers, vari-
ance of the steady-statewaiting time can be used as an
appropriate measure of fairness. To the best of our
knowledge, all earlier work on minimization of var-
iance of waiting times considers customers from a
single class. Here, we study the variance minimiza-
tion problem for an M/G/1 queue with multiple
classes of customers with equal service rates but
possibly different service time distributions.

For identical service rates for all customers, the steady-
state mean waiting times are the same under any policy
inΠ as can be verified by the work conservation law.
Hence, minimizing the variance of the steady-state
waiting times withinΠ is equivalent tominimizing its
second moment, which corresponds to letting Ci(t) �
t2 (t ≥ 0) for all i in our formulation. Then, we can use
Corollary 1 to prove the following result.

Proposition 7. Suppose that λ, μi, τ(2)i , and τ(3)i are finite
and μi � μ > λ for all i � 1, 2, . . . ,K, and without loss of
generality, pk ≤ pk+1 for fixed k ∈ {1, 2, . . . ,K − 1}. Let π∗k
be a policy that minimizes the variance of the steady-state
waiting times within the set {πk, πk+1, π̄k}.

a. If ρ ≥ (∑k+1
j�1 pj +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(pk + pk+1)pk
√ )−1, then π∗k � π̄k.

b. If (∑k+1
j�1 pj +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(pk + pk+1)pk+1
√ )−1 ≤ ρ < (∑k+1

j�1 pj +̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(pk + pk+1)pk
√ )−1, then there exists a threshold ξk > τ(2)k+1
such that

π∗k � π̄k, if τ 2( )
k ≤ ξk;

πk+1, if τ 2( )
k > ξk.

{

c. If ρ < (∑k+1
j�1 pj +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(pk + pk+1)pk+1
√ )−1, then there exist

thresholds ξk > τ(2)k+1 and ξ̃k < τ(2)k+1 such that

π∗k �
πk, if τ 2( )

k < ξ̃k;

π̄k, if ξ̃k ≤ τ 2( )
k ≤ ξk;

πk+1, if τ 2( )
k > ξk.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Proposition 7 explicitly shows the effects of traffic
intensity, proportions of types, and service time vari-
ances on the selection of the fairest policy. In particular,
from Proposition 7(a), we can see that, if the traffic
intensity is sufficiently large, then prioritizing either
type over the other is worse than pooling these two
types together. After a closer examination of this
lower bound on ρ in part (a), we find that this con-
dition could possibly hold for ρ < 1 if and only if the
total proportion of the two types under consideration
is sufficiently large (i.e., pk + pk+1 >

̅̅
2

√ ∑K
j�k+2 pj) and

the dominant type (i.e., type k + 1 because pk ≤ pk+1)
does not heavily dominate the other type in pro-
portion (i.e., 1 ≤ pk+1/pk < ((pk + pk+1)/∑K

j�k+2 pj)2 − 1);
see proof of part (a) of Proposition 7 in the appendix.
(These two conditions are automatically satisfied
whenK � 2.) Proposition 7(a) also implies that FCFS is
better than any policy that groups the types into two
priority classes if ρ ≥ (1 + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

min(p1, p2, . . . , pK)
√ )−1, that

is, if traffic is sufficiently heavy and/or none of the
types constitute too small a portion of the population.

Proposition 7(b) states that, if the traffic is not as
heavy as in part (a) and also is not too light, then
prioritizing the type with a smaller proportion can
never minimize the variance of steady-state waiting
times, and which of the remaining two policies is best
depends on the service time variances of the two types
under consideration. More specifically, because ser-
vice rates are the same for types k and k + 1, com-
parison of τ(2)k and τ(2)k+1 is the same as the comparison
of service time variances. Hence, undermediocre traffic
intensity, prioritizing the proportionally dominant type
is the best if the service time variance for the other type is
significantly larger than that of the dominant type;
otherwise, pooling the two types is the best.
Finally, Proposition 7(c) shows that, when the traffic

is light, giving priority to one type over the other is
preferable if and only if its service time variance
is sufficiently smaller than that of the other type.
However, when variances of service times for the
two types are similar, then serving them according
to FCFS can still be better than prioritizing either
type even though the traffic is light. Note that we
can obtain closed-form expressions for thresholds ξk
and ξ̃k in Proposition 7, but in the interest of space,
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we provide these in the proof of Proposition 7 in
the appendix.

6. Prioritization Under Imperfect
Cost Information

In Sections 4 and 5, we provide analytical compari-
sons of policies that prioritize certain types over others
and those that pool them under the assumption that
cost functions for the types under consideration are
completely known. In certain situations, however, we
may have reliable estimates on the exact functional
form of waiting cost of one type but only have partial
information on the waiting cost of other types, such
as a range of their marginal waiting costs. For ex-
ample, if we use regression models to estimate the
cost function from data for different types of cus-
tomers, we may not be able to obtain good regression
models for all types, but for certain types, we can
estimate a range for the marginal costs.

In this section,wepresent a result, namelyCorollary 2,
that orders the long-run average costs under policies
πk, πk+1, and π̄k, which are defined in Section 4 for
fixed k ∈ {1, 2, . . . ,K} when we have only partial cost
information on one of the two types under consid-
eration. Specifically, we assume that Ck(t) is com-
pletely known, but we only know the range of values
that C′

k+1(t) could take. (Corollary 2 also holds if we
switch the indices k and k + 1).

Corollary 2. Suppose that Assumption 1 holds under
policies πk, πk+1, and π̄k.

a. If C′
k+1(t) ≥ max{δπk

k , δπk+1
k }μk/μk+1 for all t ≥ 0,

then Cπk+1 ≤ Cπ̄k ≤ Cπk .
b. If C′

k+1(t) ≤ min{δπk
k , δπk+1

k }μk/μk+1 for all t ≥ 0,
then Cπk ≤ Cπ̄k ≤ Cπk+1 .

c. If δπk
k μk/μk+1 ≤ C′

k+1(t) ≤ δπk+1
k μk/μk+1 for all t ≥ 0,

then Cπ̄k ≤ Cπk+1 and Cπ̄k ≤ Cπk .

Corollary 2 provides bounds on C′
k+1(t) for all t ≥ 0,

namely δπk
k μk/μk+1 and δπk+1

k μk/μk+1, to compare poli-
cies πk, πk+1, and π̄k. Specifically, C′

k+1(t) has to be
bounded from either above or below for all t ≥ 0
(which is true, for example, when the cost function
is concave) for the conditions of the corollary to hold.
We next look at two special cases to demonstrate how
this result could be useful.

6.1. Quadratic Cost for One Type
Suppose type k customers are known to have a
quadratic cost function, that is, Ck(t) � c(2)k t2 + c(1)k t
for c(1)k ≥ 0 and c(2)k > 0, but we do not know the exact
form of Ck+1(t). In this case, we have δγk � c(2)k Mγ

k + c(1)k ,
where Mγ

k is given by (4) for γ ∈ {πk, πk+1} and δπk
k <

δπk+1
k (see the proof of Proposition 3). Then, Corollary 2

implies that, if the waiting cost for type k + 1 cus-
tomers increases at a sufficiently large rate at all times,
that is, C′

k+1(t) is at least δπk+1
k μk/μk+1, then type k + 1

customers should be prioritized over type k; if the
waiting cost of type k + 1 customers increases at a
small rate at all times, that is, C′

k+1(t) is at most
δπk
k μk/μk+1, then type k customers should be priori-

tized over type k + 1; and if the derivative of Ck+1(t)
lies between δπk

k μk/μk+1 and δπk+1
k μk/μk+1 at all times,

then assigning the same priority to these two types
is the best. Furthermore,we notice that δπk

k , δπk+1
k , and the

difference δπk+1
k − δπk

k all increase inλ (see (A.8)–(A.10)),
which implies that the bounds δπk

k μk/μk+1 and
δπk+1
k μk/μk+1 and the length of the interval (δπk

k μk/
μk+1, δπk+1

k μk/μk+1) are all increasing as λ becomes
larger. Indeed, both δπk

k and δπk+1
k go to infinity as λ

approaches μ for k � K − 1, which leads to an im-
portant conclusion: if one type has a quadratic
cost function and the derivatives of the cost functions
of all the other types are bounded from above, then
it is never best to assign the lowest priority to the
type with quadratic cost when the traffic intensity is
heavy no matter what the service time and cost pa-
rameters are for the other types.

6.2. Linear Cost for at Least One Type
Suppose that type k customers are known to have a
linear cost function, that is, Ck(t) � ckt for t ≥ 0 and
ck > 0, but we do not know the exact form of Ck+1(t).
Then, we have δπk

k � δπk+1
k � ckμk, and by Corollary 2, if

C′
k+1(t) ≥ ckμk/μk+1 for all t ≥ 0, then Cπk+1 ≤ Cπ̄k ≤ Cπk ,

and if C′
k+1(t) ≤ ckμk/μk+1 for all t ≥ 0, then Cπk ≤

Cπ̄k ≤ Cπk+1 . This means that, even if we do not know
the exact waiting cost function for type k + 1 cus-
tomers, if we know that their marginal waiting cost
at any amount of wait is greater than (less than)
ckμk/μk+1, then prioritizing type k + 1 (type k) cus-
tomers is better than prioritizing the other type or
pooling these two types. This result also leads to
another practical finding for systems that have lin-
ear cost functions for all types but one. More spe-
cifically, suppose that Cj(t) � cjt for t ≥ 0, cj > 0, and
j � 2, 3, . . . ,K. If C′

1(t) ≥ maxj�2,...,K{cjμj}/μ1 for all t ≥ 0,
then Corollary 2 implies that type 1 should receive
the highest priority, and all other types should follow
the cμ-rule. Similarly, if C′

1(t) ≤ minj�2,...,K{cjμj}/μ1 for
all t ≥ 0, then type 1 should receive the lowest priority
while all other types follow the cμ-rule. To demon-
strate further, consider convex–concave (or S-shaped)
cost functions that are commonly discussed in service
operations literature. If we suspect that one type has
such a cost function and can estimate the smallest
marginal cost for this type over all waiting times t,
then our result can provide a simple sufficiency
condition for the optimality of prioritizing this type
over all other types with linear costs. As an example,
suppose that C1(t) � h3t3 − h2t2 + h1t for t ≥ 0, where
h1, h2, h3 are positive constants such that C′

1(t) > 0, that
is, h22 < 3h1h3. (It is easy to see that this cubic cost
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function is S-shaped.) Then, our result implies that
type1 should receive thehighestpriority ifmint≥ 0 C′

1(t) �
h1 − h22/(3h3) > maxj�2,...,K{cjμj}/μ1.

7. Numerical Study
To obtain a better understanding of priority assign-
ment in systems with multiple types of customers, we
conduct a numerical study on a system with three
types as presented in Section 7.1. We also conduct
an exploratory numerical analysis into when it would
be desirable to consider more complex policies that
take into account the waiting times of customers;
see Section 7.2.

7.1. Fixed Priority Policies for Systems with Three
Types of Customers

Consider a system with K � 3, in which service times
are i.i.d. exponentially distributed with rate μ � 1 for
all customers types and the cost function for type i
customers is in the form of Ci(t) � cit2 for i � 1, 2, 3.
(For notational convenience, we drop the superscript
of c(2)i throughout Section 7.) We fix c2 to be one, and
without loss of generality, we set the cost parameters
such that c1 > c2 > c3.

Recall that there are 13 policies in ΠF when K � 3
as discussed at the beginning of Section 4. Instead
of computing and comparing the long-run average
costs for all 13 policies to identify the best policy π∗
in ΠF, we first eliminate some of these policies using
Corollary 1 and the assumption that c1 > c2 > c3. In
particular, we can eliminate policies that give priority
to types with smaller values of ci; see the discussion
in the paragraph following Corollary 1. Hence, out of
the six policies in ΠF that assign a different priority
order to each type, we only need to consider the one
that assigns priority order i to type i customers for
i � 1, 2, 3. Furthermore, for any policy in ΠF that
pools types k and � for 1 ≤ k < � ≤ 3, the waiting
cost function for the pooled group of customers is

Ck�(t) � ck�t2, t ≥ 0, where ck� � (pkck + p�c�)/(pk + p�).
Then, because c12 > c3 and c1 > c23, we can eliminate
the policy that prioritizes type 3 over the pooled group
of types 1 and 2 as well as the policy that prioritizes the
pooled group of types 2 and 3 over type 1.
After eliminating seven policies from ΠF, we nu-

merically compute and compare the long-run average
costs for the remaining six policies to find π∗ for
different values of c1 > 1 > c3 when the proportion
of each type pi is 1/3 and the traffic intensity is
ρ ∈ {0.3, 0.7, 0.9}. For these parameters, our numeri-
cal results show that π∗ can only be one of the fol-
lowing four policies: (i) policy π̂ that assigns priority
order i to type i customers for i � 1, 2, 3; (ii) policy π̂12
that prioritizes the pooled group of types 1 and 2
customers over type 3; (iii) policy π̂23 that priori-
tizes type 1 customers over the pooled group of
types 2 and 3; and (iv) FCFS. The two policies that
pool types 1 and 3 and prioritize either the pooled
group or type 2 were never the best under all tested
parameters. (The comparisons for distinct values of
pi’s are similar and are provided in Figures A.1
and A.2 in the Appendix.)
Corollary 1 provides the following partial com-

parison of the remaining four policies:
i. For k ∈ {1, 2} and � � k + 1, Cπ̂ ≤ Cπ̂k� if and only if

ck
ck+1

≥ Γk ≡ 1 + ρ̄k−1(ρ̄k+1 −1 + ρ̄ −1
k − 1)

ρ̄k(ρ̄ −1
k+1 + ρ̄ −1

k + ρ̄ −1
k−1 − 1) ;

ii. CFCFS ≤ Cπ̂12 if and only if

c12
c3

≤ Γ12 ≡ 2 − ρ1 − ρ2 + (1 − ρ)(1 − ρ1 − ρ2)−1
2 − ρ1 − ρ2 − ρ

;

iii. CFCFS ≤ Cπ̂23 if and only if

c1
c23

≤ Γ23 � 2 − ρ1 + (1 − ρ)(1 − ρ1)−1
2 − ρ1 − ρ

.

Figure 3. (Color online) Optimal Policy inΠF with K � 3, pi � 1/3, and Ci(t) � cit2 for i ∈ {1, 2, 3}, c2 � 1, ρ ∈ {0.3, 0.7, 0.9}, and
Exponentially Distributed Service Times with Mean One
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Figure 3 provides plots of optimality regions deter-
mined partially by bounds Γ1,Γ2,Γ12, and Γ23 pro-
vided. More specifically, the upper leftmost corner is
where π̂ is better than π̂12 and π̂23 (determined by lines
c1 � Γ1 and c3 � Γ−12 , respectively), and the lower
rightmost corner is where FCFS is better than π̂12 and
π̂23 (determined by lines c1 � Γ12(1+ p2/p1)c3 − p2/p1
and c1 � Γ23(p2 + p3c3)/(p2 + p3), respectively). By us-
ing numerical comparisons, we also find that π̂ and
FCFS are indeed the best in ΠF in these respective re-
gions. The optimality regions for π̂12 and π̂23 are found
numerically in Figure 3. (Our analytical results do not
provide comparisons between FCFS and π̂or between
π̂12 and π̂23.) We make the following observations from
Figures 3, A.1, and A.2, which extend most of our
analytical observations for the case with two types of
customers in Section 5.1 to the case with three types:

1. Assigning different priority orders to indi-
vidual types (policy π̂) is the best if the cost coeffi-
cients for all types are significantly different, that
is, c1/c2 ≥ Γ1 > 1 > 1/Γ2 ≥ c3/c2.

2. FCFS is the best when the cost coefficients of
all three types are close to each other, that is, c1/c2 and
c3/c2 are both close to one.

3. As λ (and, hence, ρ) increases, the region in
which assigning individual priority is the best shrinks,
and the region in which FCFS is the best enlarges.

4. Pooling types k and k + 1 is better than
assigning individual priority order or FCFS if the cost
coefficients of the pooled types are close but are signif-
icantly different from that of the remaining type. For
example, if c1/c2 ≤ Γ1 and c3 is sufficiently small, then
pooling types 1 and 2 together and prioritizing the
group over type 3 is the best (the lower left corner).

5. The optimality region for policies that prior-
itize a particular type (or group) over the others
shrinks if the proportion of that type (or group) in-
creases. For example, ifp1 increases, then the regions in
which type 1 should be prioritized over the remaining
customers (i.e., the optimality regions for policies π̂
and π̂23) shrink, and if p2 increases (for fixed p1), then
the optimality region of policy π̂ becomes smaller.

6. Aproportionally dominant type (or group) should
beprioritizedunder heavy traffic only if its cost coefficient
is much larger than that of the remaining type(s).

7.2. Comparison of Fixed Priority Policies with a
Dynamic Priority Policy (G-cμ Rule)

In this section, we numerically compare the perfor-
mance of the best policy within ΠF with the perfor-
mance of awell-known dynamic policy that takes into
account the waiting times of customers for prioriti-
zation. In particular, we compare the best policy π∗ in
ΠF with the generalized cμ (G-cμ) rule under a wide
range of parameter settings. Our goal is to identify
conditions under which it would be worthwhile to

use the G-cμ rule as opposed to π∗ and also conditions
under which the additional complexity of the G-cμ
rule does not bringmuch benefit. (Recall that the G-cμ
rule gives priority to the customer with the largest
C′
i (t)μi value.) The comparison is made with the G-cμ

rule, a heuristic, because wewere not able to identify the
optimal dynamic policy within the set of all policies that
take into account waiting times resulting from a large
state space.Note that theG-cμ rule is optimal for convex
cost functions under heavy traffic (VanMieghem 1995).
Here, we present our results for systemswith K � 2,

but note that our study on systems with three types
yields similar conclusions (see Figure A.3 in the Ap-
pendix). Assume that service times for type i ∈ {1, 2}
customers are exponentially distributed with rate μi,
where μ2 is fixed at one per unit time, and the cost
functions take the form C1(t) � c1t2 and C2(t) � t2,
t ≥ 0. We consider 81 different scenarios corre-
sponding to all combinations of ρ ∈ {0.3, 0.7, 0.9},
p1 ∈ {0.1, 0.5, 0.9}, μ1 ∈ {0.2, 1, 5}, and c1 ∈ {0.1, 0.9, 5}.
We can identify the best fixed priority policy inΠF by
computing the values of Rπ1 and Rπ2 in Corollary 1
(reported in Table A.4 in the Appendix): π2 has the
smallest cost if c1μ1 < Rπ2 , π1 has the smallest cost if
c1μ1 > Rπ1 , and FCFS has the smallest cost if
Rπ2 ≤ c1μ1 ≤ Rπ1 . To obtain the long-run average cost
under the G-cμ rule (denoted by CG), we built a
simulation model (using Simio 11 simulation soft-
ware), inwhichwe computed a priority index for each
customer in the queue and assigned nonpreemptive
priority to the one with the largest index. Under the
specific cost structure and experimental setting of this
section, the priority index for a type i customer who
waited for t ≥ 0 time units, determined by the G-cμ
rule, is given by 2citμi. We ran 100 independent rep-
lications of length 60,000 minutes for each scenario and
truncated the first 6,000 minutes based on a warmup
period analysis. We report the mean relative cost
difference by using the G-cμ rule over the best fixed
priority policy, that is, (CG − Cπ∗) × 100/Cπ∗ (in per-
centage) and a 95% confidence interval (C.I.) on this
relative cost difference from the simulation runs. If
the C.I. does not contain zero, then we conclude that
there is statistical evidence that π∗ and the G-cμ rule
are different; the comparison is in favor of π∗ for a
positive C.I. and the G-cμ rule for a negative one.
Figure 4 presents these results.
From these simulation results, we find that the cost

difference between the best fixed priority policy and
the G-cμ rule is insignificant in most scenarios, es-
peciallywhen the traffic intensity is light ormoderate,
and the G-cμ rule may have smaller costs in scenarios
under heavy traffic. In several scenarios, for exam-
ple, c1 � 5, μ1 � 5, p1 � 0.9 with traffic intensity 0.7 or
0.9 (when π∗ � π1) and c1 � 0.1, μ1 � 0.2, p1 � 0.1 with
traffic intensity 0.7 (when π∗ � π2), the best fixed
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priority policy performs better than the G-cμ rule.
In these scenarios, we find that the prioritized type
has significantly higher proportion, cost coefficient,
and service rate. Furthermore, we notice that, when
FCFS is the best fixed priority policy, either its per-
formance is similar to that of the G-cμ rule or the
G-cμ rule outperforms it. We also observe that for
heavy traffic scenarios, in which the parameters fall
close to the thresholds that characterize the optimal
fixed priority policy reported in Table A.4 (possibly
suggesting that none of the fixed priority policies
stands out), the G-cμ rule performs better than the
best fixed priority policy. Hence, it is worthwhile to
consider the more complex G-cμ rule over a fixed
priority policy when the traffic is heavy and there is
not a clearlymore “important” type. One could assess
whether there is clearly a more important type or
not by considering how far the system parameters
land from the thresholds of the best fixed priority
policy. If they are closer to a threshold, such as
in scenarios c1 � 5, μ1 � 1, p1 � 0.9, ρ � 0.9 or c1 � 0.9,
μ1 � 0.2, p1 � 0.1, ρ � 0.9, then this could be taken as
an indicator that there is not a clearly more impor-
tant type, and hence, the G-cμ rule should be con-
sidered. On the other hand, when the traffic is light
or the system parameters fall farther away from the
thresholds, for example, when one type has a sub-
stantially larger cost, service rate, and proportion,

then it is not necessary to use theG-cμ rule, and in fact,
it could be better to use the best fixed priority policy,
which does not require knowing the cost function
precisely and is much simpler to implement.

8. Conclusions
In order to answer some fundamental questions sur-
rounding prioritization of certain customer groups
in a service system, we study a single-server queueing
model with stationary Poisson arrivals of multiple types
of customers with possibly distinct service time dis-
tributions and nonlinear waiting cost functions. When
waiting costs are nonlinear functions of time, it is known
that, in general, the priority policy that minimizes the
long-run average waiting costs is dynamic, that is, de-
pendent on the durations of time customers in the queue
have already spent waiting in addition to their types.
However, in practice, the most commonly employed
policies are still FCFSandstrictfixedprioritypolicies that
give exclusive priority to one of the types of customers
independently of the system state. In this paper, we
compare these fixed priority policies (including FCFS) in
terms of their long-run average performance and derive
several managerial insights by focusing mostly on the
case with quadratic waiting costs.
It is well known that, if all customers have linear

waiting costs, then only the product of the rates of
service and waiting cost affect the characterization of

Figure 4. (Color online) The 95% C.I. of the Relative Cost Difference Between the G-cμ Rule and π∗ for the Case with K � 2,
Where Negative Values Indicate That the G-cμ Rule Has a Smaller Cost Than π∗
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optimal policies, and the higher the number of pri-
ority classes, the better it is—FCFS being the worst.
However, this is no longer the case when cost func-
tions are nonlinear. More specifically, for quadratic
cost functions, we conclude that splitting the cus-
tomer population into as many priority classes as
possible may actually increase the long-run average
waiting costs if one were to apply only fixed priority
policies. Fixed priority policies can perform better
than FCFS when there is sufficient heterogeneity in the
population, and hence, the benefit gained by priori-
tizing one group over the other compensates for the
damage caused by lowering the priority of the rest.
For quadratic costs, we find that the heterogeneity of
the population is determined by the population mix
(i.e., proportions of each customer type in the pop-
ulation) and the first three moments of service times
aswell as cost parameters. Furthermore,we show that
the arrival rate has a direct effect on the decision to
prioritize or not. Specifically, we observe that the
parameter region in which FCFS is best enlarges as
the arrival rate increases. Hence, haphazardly replac-
ing the FCFS discipline with a strict fixed priority
policy without considering system parameters, such as
traffic intensity and service-time variability, may lead to
inferior system performance when there is any concern
that the waiting cost functions might not be linear. We
find that one should be especially cautious with priori-
tizing types that constitute a large proportion of the
population mix. One setting in which it would be safe to
replace the FCFS discipline with a strict fixed priority
policy iswhenone type has a quadratic cost function and
thederivative of the cost functionof all other customers is
bounded from above (as in a linear cost function). In
such a case, a policy that prioritizes the type with qua-
dratic cost is better under heavy traffic regardless of the
service time distributions.

As a by-product of our study on quadratic costs,
we also obtained some useful results on the problem
of minimizing the variance of steady-state waiting
times, which is widely accepted to be equivalent to
maximizing fairness in queueing systems. Earlier
work shows that FCFS is the fairest policy when the
population is homogenous in terms of service time
variability. For a population with heterogenous ser-
vice time variability, we show that FCFS is still the
fairest policy if the traffic intensity is sufficiently large
and no type is significantly dominant in numbers.
In particular, one of our results implies that FCFS is
better than any policy that groups customer types into
two priority classes if the traffic intensity is larger
than 1/(1 + ̅̅p√ ), where p is the smallest proportion
of any type in the population. However, if the traffic
intensity is not heavy, then we show that prioritizing
the type with smaller service time variance could
actually be fairer than FCFS.

Because the focus of this work is on the use (or
misuse) of simple but popular fixed priority policies
in systems with nonlinear waiting costs, we mostly
exclude more complex priority policies, such as those
that use waiting time information of customers while
giving priority decisions. Perhaps the most well-
known policy in this set is the G-cμ rule, which is
shown to be optimal under heavy traffic and convex
waiting costs. An important future research direction
would be to study conditions under which it would
be better to use these more complex policies. In this
paper,we provide an exploratory analysis to facilitate
interest on this research question by conducting a
simulation study that compares the best fixed priority
policy with the G-cμ rule under quadratic waiting
costs. We find that the G-cμ rule performs better than
the best fixed priority policy for a heavily loaded
system when the customer population is not suffi-
ciently heterogeneous. On the other hand, when
the traffic is not heavy or one type has substantially
larger cost of waiting, service rate, and proportion
of the demand, then the best fixed priority policy,
which is much easier to implement and does not re-
quire precise knowledge of the waiting cost function,
performs similarly or even slightly better than the G-cμ
rule. We believe thatmore research is needed to support
these claims, especially given that the G-cμ rule is not
always an optimal dynamic policy. Studying ran-
domized priority policies, in which the priority is not
fixed but randomly assigned to different types,
would be an interesting and useful future research
direction as well because these policies would be a
good compromise between simple fixed priority
policies and more complex state-dependent ones.
Another interesting future research direction would

be to study the same problem under other specific
waiting cost structures in more detail, such as cost
functions with exponential or concave growth. For
some preliminary results in this direction, we refer
interested readers to section 2.7 in Ouyang (2016).
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Appendix
In this appendix, we provide proofs of theoretical results
and other supplemental material.

A.1. Notation, Definitions, and Lemmas
We first provide three tables of notation used in the main
paper and the appendix.

Next, we introduce several definitions and lemmas that
are used in the proofs of our results.

Lemma A.1. For policies πk, πk+1, and π̄k that are defined in
Section 4, we have
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a. Wπk
j �st W

πk+1
j �st W

π̄k
j for j ∈ {1,2, . . . ,K} \ {k,k+ 1}, where

�st means equivalence in distribution.
b. Wπi

i ≤st Wπ̄k ≤st Wπi
2k+1−i for i ∈ {k, k + 1}, where ≤st de-

notes usual stochastic ordering; see, for example, section 1.A.1 of
Shaked and Shanthikumar (2007).

c. E
[
Wπ̄k ] � λτ(2)

2ρ̄k+1 ρ̄k−1 ,E
[
Wπi

i ] � λτ(2)
2(ρ̄k−1−ρi)ρ̄k−1 ,E

[
Wπi

2k+1−i] �
λτ(2)

2ρ̄k+1(ρ̄k−1−ρi) , for i ∈ {k, k + 1}.

Proof of Lemma A.1.
a. The distribution function for the steady-state waiting

times of customers with priority order p under policy γ is
given by equation 17 in Takács (1964) as follows:

P Wγ

p[ ] ≤ x
{ }

�
∫ x

0

∑∞
j�0

e−Λ
γ
≤ p−1y

Λ
γ
≤p−1y

( )j
j!

Bγ
p,j x − y
( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dW∗γ
≤p y

( )
,

(A.1)
where Bγ

p,j(x) for p � 2, 3, . . . ,Kγ is the distribution func-
tion of the length of a busy period in an M/G/1 queue
with arrival rateΛγ

≤ p−1 and service time distribution Sγ≤ p−1(x)
in which there are j ≥ 0 customers initially in the system;
Bγ
1,j(x) � 1 for all x ≥ 0 and j ≥ 0; and W∗γ

≤p(y) for p �
1, 2, . . . ,Kγ is the distribution function of the steady-state
waiting time for a customer with priority order ≤ p under a
modified policy, defined as follows: customers of priority
order ≤ p under γ are pooled and served according to FCFS
regardless of their actual priority order under policy γ, and
their service times are i.i.d. with distribution Sγ≤p(x), and all
other customers are served according to γ.

For p � 1, 2, . . . , k − 1, it is easy to see that Λπk≤p−1 � Λπk+1≤p−1 �
Λπ̄k≤p−1, S

πk≤p−1(x) �Sπk+1≤p−1(x) � Sπ̄k≤p−1(x), and hence, Bπk
p,j(x) � Bπk+1

p,j

(x) � Bπ̄k
p,j(x) for all x ≥ 0 and j ≥ 0, and W∗πk≤p (y) �W∗πk+1≤p (y) �

W∗π̄k≤p (y) for all y ≥ 0. Similarly, for p � k + 2, . . . ,K, we have
Λπk≤p−1 � Λπk+1≤p−1 � Λπ̄k≤p−2, Sπk≤p−1(x) � Sπk+1≤p−1(x) � Sπ̄k≤p−2(x), and

Bπk
p,j(x) � Bπk+1

p,j (x) � Bπ̄k
p−1,j(x) for all x ≥ 0 and j ≥ 0, and

W∗πk≤p (y) � W∗πk+1≤p (y) � W∗π̄k≤p−1(y) for all y ≥ 0. Thus, by (A.1),
Wπk

p �st Wπ̄k
p �st Wπk+1

p for p ∈ {1, 2, . . . ,K}\ {k, k + 1}.
b. We use sample path arguments to prove the stochastic

inequalities. First, we fix i ∈ {k, k + 1}. In this proof, type k
and type k + 1 customers (who have priority order k and
k + 1 under policy π � πk) are referred to as relevant cus-
tomers, type i customers are called higher priority cus-
tomers, and type i′ customers are called lower priority
customers under policy πi, where i′ � 2k + 1 − i.

We index the relevant customers by their arrival order to
the system and let sj be the arriving time of the jth relevant
customer. Then, for the �th and jth relevant customers, where
j > � ≥ 1, we have sj > sl. Let t

γ
j be the service starting time

of the jth relevant customer under policy γ ∈ {πk, πk+1, π̄k},
and then tγj ≥ sj. Let also Vγ

j denote the waiting time of the
jth relevant customer under policy γ, and then Vγ

j � tγj − sj
for j � 1, 2, . . ..

Under π̄k, we have tπ̄k
1 < tπ̄k

2 < · · ·with probability one. Let
j1 be the index of the first lower priority customer whose
service starts when there are higher priority customers waiting
and j2 be the index of the first higher priority customer in the
queue when j1 starts service under π̄k. Then, the customers
indexed from j1 to j2 − 1 are all lower priority customers.
Note that sj1 < · · · < sj2−1 < sj2 < tπ̄k

j1 < · · · < tπ̄k
j2−1 < tπ̄k

j2 .
Consider a policy π′ that follows π̄k except that it serves

customer j2 before it serves lower priority customers
j1, . . . , j2 − 1. For customer j2, who is a higher priority cus-
tomer, tπ

′
j2 � tπ̄k

j1 < tπ̄k
j2 and Vπ′

j2 � tπ
′

j2 − sj2 < tπ̄k
j2 − sj2 � Vπ̄k

j2 . For
� � j1, . . . , j2 − 1, who are all lower priority customers, tπ

′
l >

tπ̄k
l and Vπ′

l � tπ
′

l − sl > tπ̄k
l − sl � Vπ̄k

l . For any � /∈ {j1, . . . , j2},
we have Vπ′

l � Vπ̄k
l .

If we keep changing the service order like this when there
are lower priority customers starting service while higher
priority customers are waiting in the queue, then we even-
tually reach policy πi. This coupling argument then yields

Table A.1. Notation for System Parameters

Notation Description

λ Arrival rate of all customers
pi Probability that an arriving customer belongs to type i
μi Service rate of type i customers
τ(n)i nth moment of service time of type i customers for n ≥ 2
ρi Traffic intensity for type i customers, that is, λpi/μi

ρ̄k 1 −∑k
j�1 ρj for k � 1, . . . ,K and ρ̄0 � 1

ρ Traffic intensity for all customers, that is,
∑K

j�1 ρj
μ Service rate for a random customer, that is, (∑K

j�1 pj/μj)−1
τ(n) nth moment of service time for a random customer, that is,

∑K
j�1 pjτ

(n)
j for n ≥ 2

Ci(·) Waiting cost function for type i customers
Cγ Long-run average waiting cost under policy γ
Kγ Number of priority orders under policy γ
γ(i) Priority order of type i customers under policy γ, where γ(i) ∈ {1, 2, . . . ,Kγ}
pγ[ j] Probability that an arriving customer has priority order j under policy γ, i.e.,

∑
{i :γ(i)�j} pi

μ
γ
[ j] Service rate of customers with priority order j under policy γ

τ
(n),γ
[ j] nth moment of service time of customers with priority order j under policy γ for n ≥ 2

ρ
γ
[ j] Traffic intensity for customers with priority order j under policy γ

ρ̄
γ
[k] 1 −∑k

j�1 ρ
γ
[j] for k � 1, . . . ,Kγ and ρ̄

γ
0 � 1

Λ
γ
≤k Arrival rate of customers with priority order k or smaller under policy γ, that is, λ

∑k
j�1 p

γ
[j]
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Vπi ,x0
i,n ≤st V

π̄k ,x0
i,n and Vπi ,x0

i,n ≥st V
π̄k ,x0
i′,n for n ≥ 1. Because Wγ

i is
the steady-state waiting time for type i customers under
policy γ, then, as n → ∞, Vγ,x0

i,n →d Wγ
i and Vγ,x0

i′,n →d Wγ
i′ for γ ∈

{πk, πk+1, π̄k}, where→d denotes convergence in distribution,
and hence, according to theorem 1.A.3(c) in Shaked and
Shanthikumar (2007), we have Wπi

i ≤st Wπ̄k ≤st W
πi
i′ .

c. The result follows directly from equation 68 of Takács
(1964). □

Definition A.1 (Di Crescenzo 1999). Let X and Y be two non-
negative random variables with X ≤st Y and E[X] < E[Y] < ∞.
Then, Z ≡ Ψ(X,Y) is a random variable with probability den-
sity function

fZ x( ) � FX x( ) − FY x( )
E Y[ ] − E X[ ] , x ≥ 0,

where FX(·) and FY(·) are the cumulative distribution functions
of X and Y, respectively. Di Crescenzo (1999) shows that
fZ(·) is a probability density function.

LemmaA.2 (Theorem 4.1 of Di Crescenzo 1999). Let X and Y
be two nonnegative random variables satisfying X ≤st Y and
E[X] < E[Y] < ∞ and let Z � Ψ(X,Y). Let also g be a measurable
and differentiable function such that E[g(X)] and E[g(Y)] are finite
and let its derivative g′ be measurable and Riemann-integrable on
the interval [x, y] for all 0 ≤ x ≤ y. Then, E

[
g′(Z)] is finite and

E g Y( )[ ] − E g X( )[ ] � E g′ Z( )[ ]
E Y[ ] − E X[ ]( ). (A.2)

Lemma A.2 presents a probabilistic analogue of the mean
value theorem, in which Z is a random variable that can be

considered as the “mean value” of X and Y. However,
unlike for the (deterministic) mean value theorem, Z does
not change with the function g, and Z � Ψ(X,Y) is not
necessarily ordered (in some stochastic sense) between X
and Y. For example, when X and Y are exponential random
variables with distinct rates, Z �st X + Y (see example 3.1 in
Di Crescenzo 1999).

A.2. Proofs of Results and Supplemental Material for
Sections 3 and 4
A.2.1. Proof of Equivalence of Equations (1) and (2). The
long-run average cost in (1) can be written as

Cπ � ∑K
i�1

lim
t→∞

∑ni t( )
k�1 Ci V

π,x0
i,k

( )
ni t( ) lim

t→∞
ni t( )
t

� ∑K
i�1

λpi lim
n→∞

∑n
k�1 Ci Vπ,x0

i,k

( )
n

, (A.3)

which follows from the fact that {ni(t), t ≥ 0} is a Poisson
process with rate λpi for i ∈ {1, 2, . . . ,K}. In the following, we
prove that, for i ∈ {1, 2, . . . ,K} when E[⃒⃒Ci(Wπ

i )
⃒⃒] is finite,

lim
n→∞

∑n
k�1 Ci Vπ,x0

i,k

( )
n

� E Ci Wπ
i

( )[ ]
, (A.4)

which shows that (A.3) (and, hence, (1)) is equivalent to (2).
In the remainder of this proof, we drop the superscripts π

and x0 for notational convenience and let Tik, Sik, and Dik be

Figure A.1. (Color online) Optimal Policy in ΠF with K � 3, ρ � 0.7, and Ci(t) � cit2 for i ∈ {1, 2, 3}, c2 � 1, p � (p1, p2, p3)
Indicated in Each Plot and Exponentially Distributed Service Times with Mean One
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the arrival, service, and departure times of the kth type i
customer, respectively, under policy π and initial state x0.
Then, Vik � Dik − Tik − Sik is the queue waiting time for this
customer. Note that {Vik, k � 1, 2, . . .} for each i ∈ {1, 2, . . . ,K}
is a delayed regenerative process with nth regeneration
happening at Ni,n for n � 0, 1, 2, . . ., where Ni,0 � 1, and
Ni,n � min{k : k > Ni,n−1,Vik � 0}. Note also that, for each i,
{Ci(Vik), k � 1, 2, . . .} is a regenerative process with the
same regeneration epochs as {Vik}. Then, by theorem 13 of

chapter 2 and last paragraph of page 93 in Wolff (1989),

(A.4) holds for i ∈ {1, 2, . . . ,K} if
∑Ni,1−1

k�1 |Ci(Vik)| < ∞ with

probability one, E[Ni,2−Ni,1]<∞, and E[∑Ni,2−1
k�Ni,1

|Ci(Vik)|] < ∞.
We next complete the proof by showing that these three
conditions hold.

When ρ < 1, the system returns to the empty state within
finite time with probability one and also the expected time
for this return isfinite (see, e.g., theorem7.11 inKulkarni 2009).

Table A.2. Notation for Random Variables (RV), Their Cumulative Density Functions (CDF), and LSTs

RV CDF LST Definition

Vγ,x0
i,k — — Waiting time of the kth arriving type i customer under policy γ and initial state x0

Wγ
i — W̃γ

i (·) Steady-state waiting time of a type i customer under policy γ

Wπ̄k — — Steady-state waiting time of types k and k + 1 customers under policy π̄k

Wγ
[ j] — W̃γ

[ j](·) Steady-state waiting time for a customer with priority order j under policy γ

— Si(·) S̃i(·) Service time for type i customers
— Sγ[ j](·) S̃γ[ j](·) Service time for customers with priority order j under policy γ, that is, Sγ[j](x) ≡

∑
{i :γ(i)�j} piSi(x)/pγ[ j]

— Sγ≤k(·) S̃γ≤k(·) Service time for customers with priority order k or smaller under policy γ, that is,
Sγ≤k(x) ≡

∑k
j�1 p

γ
[ j]S

γ
[ j](x)

/∑k
j�1 p

γ
[ j]

— Sγ>k(·) S̃γ>k(·) Service time for customers with priority order greater than k under policy γ, that is,
Sγ>k(x) ≡

∑Kγ

j�k+1 p
γ
[ j]S

γ
[ j](x)

/∑Kγ

j�k+1 p
γ
[ j]

S S(·) S̃(·) Service time for a random customer, that is, S(x) ≡ ∑K
j�1 pjSj(x)

— Bγ
p,j(·) — Length of a busy period in anM/G/1 queuewith arrival rateΛγ

≤p−1 and service time distribution Sγ≤p−1(x) for
p � 2, 3, . . . ,Kγ under policy γ in which there are j ≥ 1 customers initially in the system

Uγ1 ,γ2
i — — Ψ(Wγ1

i ,Wγ2
i ) for i ∈ {k, k + 1}, γ1, γ2 ∈ {πk , πk+1, π̄k}, and γ1 �� γ2, where Ψ(·) is defined in Definition A.1

Uγ
i — — Uγ,π̄k

i for γ ∈ {πk , πk+1} and i ∈ {k, k + 1}
TB��i — B̃ ��i(·) Length of a busy period in which only type j ∈ {1, 2, . . . ,K} \ {i} customers arrive
— — B̃(·) Length of a busy period starting from an empty and idle system for an M/G/1 queue under any policy inΠ

Figure A.2. (Color online) Optimal Policy in ΠF with K � 3, ρ � 0.9, and Ci(t) � cit2 for i ∈ {1, 2, 3}, c2 � 1, p � (p1, p2, p3)
Indicated in Each Plot and Exponentially Distributed Service Times with Mean One

Ouyang, Argon, and Ziya: Prioritization in Service Systems with Nonlinear Costs
Management Science, Articles in Advance, pp. 1–23, © 2021 INFORMS 17



This implies that Ni,1 < ∞with probability one, Ni,2 −Ni,1 <
∞ with probability one, Vi,k < ∞ for any i and k with
probability one, and E[Ni,2 −Ni,1] < ∞. At last, by theorem
B.5(i) in El-Taha and Stidham (1999), E[∑Ni,2−1

k�Ni,1
|Ci(Vik)|] �

E[|Ci(Wi)|]E[Ni,2 −Ni,1] is finite under the assumption that
E[|Ci(Wi)|] is finite. □

A.2.2. Proof of Proposition 1. We consider a policy γ∗ ∈ ΠF

such that γ∗( j) � 1 for j ∈ {1, 2, . . . ,K} \ {i} and γ∗(i) � 2.
Then, we can conclude that Wγ

i ≤st W
γ∗
i for any policy γ ∈

ΠF by a similar interchange argument as in the proof of
Lemma A.1(b). Then, for 1 ≤ � < ∞, by theorem 1.A.3(a) of
Shaked and Shanthikumar (2007), we have E[(Wγ

i )�] ≤
E[(Wγ∗

i )�] for any policy γ ∈ ΠF. Note that Assumption 1
holds for type i for which Ci(t) is in the polynomial form
given in Proposition 2 under a policy γ ∈ ΠF if E[(Wγ∗

i )�] is
finite for all � � 1, 2, . . . , Ji. Note also that

E Wγ∗
i

( )�[ ]
� −1( )�d

�W̃γ∗
i s( )

ds�

⃒⃒⃒
s�0. (A.5)

We next define new notation to provide an expression for
W̃γ∗

i (s). Let B̃(s) denote the LST of the length of a busy period
starting from an empty and idle system, and let B̃ ��i(s) de-
note the LST of TB ��i , the length of a busy period in which
only type j ∈ {1, 2, . . . ,K} \ {i} customers arrive and are
served according to FCFS. Let WF denote the steady-state
waiting time under FCFS and W̃F(·) be its LST. Finally, let
S̃(x) � ∑K

j�1 pjS̃j(x). From equations 3.8 and 3.10 of Miller
(1960), we have

W̃γ∗
i s( ) � W̃F λ 1 − pi

( )
1 − B̃ ��i s( )( ) + s

( )
,

where W̃F(s) � .(1 − ρ)s/[s − λ(1 − S̃(s))], . and B̃��i(s) is the
unique solution to B̃��i(s) � S̃��i(s + λ(1 − pi)(1 − B̃��i(s))) for
s > 0 and lims→∞ B̃ ��i(s) � 0, and S̃��i(s) � (S̃(s) − piS̃i(s))/
(1 − pi). Then, using Faa di Bruno’s formula (see, e.g.,
theorem 2 of Roman 1980), (A.5) is finite if dnW̃F(s)

dsn |s�0 and
dnB̃ ��i(s)

dsn |s�0 are finite for all n ≤ �, that is, if the nth moment of
WF and TB��i are finite.

When ρ < 1, we can obtain the nth moment ofWF as (see,
e.g., Gross et al. 2008)

E WF( )n[ ] � λ

1 − ρ

∑n
��1

n
�

( )
E WF( )n−�[ ]E S�+1

[ ]
� + 1

,

where E[S�+1] is the (� + 1)st moment of service time of a
randomly picked customer. Hence, E[(WF)n] is finite if ρ < 1
and the first n + 1moments of service times of all customers
are finite. Besides, from theorem 1 of Ghahramani and
Wolff (1989), the nth moment of the busy period is finite
if and only if the nth moment of the service times is finite.
Thus, E[(Wγ∗

i )�] is finite if ρ < 1 and the first (� + 1)moments
of service times are finite. □

A.2.3. Proof of Proposition 2. We only prove part (a) here
because the proofs of parts (b) and (c) are very similar. From
Equation (2), we have

Cπk − Cπ̄k � λ
∑K
j�1

pj E Cj W
πk
j

( )[ ]
− E Cj W

π̄k
j

( )[ ]( )
� λpk E Ck Wπk

k

( )[ ] − E Ck Wπ̄k
( )[ ]( )

+ λpk+1 E Ck+1 Wπk
k+1

( )[ ] − E Ck+1 Wπ̄k
( )[ ]( )

,

where the last equation follows from Lemma A.1(a). Then,
Cπk ≤ Cπ̄k if and only if

pk+1 E Ck+1 Wπk
k+1

( )[ ] − E Ck+1 Wπ̄k
( )[ ]( )

≤ pk E Ck Wπ̄k
( )[ ] − E Ck Wπk

k

( )[ ]( )
. (A.6)

According to thework conservation law (see, e.g., Kleinrock
1965), we have

∑K
j�1

pjE Wπk
j

[ ]
/μj �

∑K
j�1

pjE Wπ̄k
j

[ ]
/μj,

and by Lemma A.1(a), we have E[Wπk
j ] � E[Wπ̄k

j ] for j ∈
{1, 2, . . . ,K} \ {k, k + 1}. Hence,

pk+1 E Wπk
k+1

[ ] − E Wπ̄k
[ ]( )

/μk+1 � pk E Wπ̄k
[ ] − E Wπk

k

[ ]( )
/μk,

(A.7)
which is positive by Lemma A.1(c). Dividing (A.6) by (A.7)
completes the proof. □

Remark A.1. For i ∈ {k, k + 1}, γ1, γ2 ∈ {πk, πk+1, π̄k}, and
γ1 �� γ2, let U

γ1 ,γ2
i ≡ Ψ(Wγ1

i ,Wγ2
i ), where Ψ(·, ·) is defined in

Definition A.1. Note thatUγ1 ,γ2
i is well defined for i ∈ {k, k + 1}

and γ1,γ2 ∈{πk,πk+1,π̄k} because E[Wπi
i ]<E[Wπ̄k ]<E[Wπ2k+1−i

i ]
from Lemma A.1(c) and because of the stochastic ordering
provided in Lemma A.1(b). Then, from Lemma A.2, we have
δ
γ1 ,γ2
i � E[C′

i (Uγ1 ,γ2
i )] for i ∈ {k, k + 1} and γ1,γ2 ∈ {πk,πk+1, π̄k}.

In an immediate corollary to Proposition 2, we provide
necessary and sufficient conditions for the optimality of πk,
πk+1, and π̄k within the set of these three policies, for which
we only need to calculate the values of δ

γ
i ≡ δ

γ,π̄k
i for i ∈

{k, k + 1} and γ ∈ {πk, πk+1}.
Corollary A.1. Let I(π̄k) ≡ 0 and I(πi) ≡ (δπi

i μi − δπi
j μj)/

(ρ̄k−1 − ρi) for i, j ∈ {k, k + 1} and j �� i. Then, the policy with the
largest (smallest) value of I(γ) for γ ∈ {πk, πk+1, π̄k} has the
lowest (highest) long-run average cost among these three policies.

Proof of Corollary A.1. For i ∈ {k, k + 1}, I(π̄k) ≥ I(πi) ⇔
δπi
i μi ≤ δπi

j μj ⇔ Cπ̄k ≤ Cπi ,which follows from Proposition 2(a)
and (b). Furthermore, for i, j ∈ {k, k + 1} and i �� j, we get

δπk ,πk+1
i � δ

πj

i
E Wπj

i

[ ] − E Wπ̄k
[ ]

E Wπj

i

[ ] − E Wπi
i

[ ]( )
+ δπi

i
E Wπ̄k
[ ] − E Wπi

i

[ ]
E Wπj

i

[ ] − E Wπi
i

[ ]( )

� δ
πj

i ρ̄k−1 − ρi
( ) + δπi

i ρ̄k−1 − ρj
( )

2ρ̄k−1 − ρk − ρk+1
,

which follows fromLemmaA.1(c). Then, by Proposition 2(c),

I πk( ) ≥ I πk+1( ) ⇔ μk δ
πk
k ρ̄k−1 − ρk+1
( ) + δπk+1 ,π̄k

k ρ̄k−1 − ρk
( )[ ]

≥ μk+1 δπk
k+1 ρ̄k−1 − ρk+1

( ) + δπk+1 ,π̄k
k+1 ρ̄k−1 − ρk

( )[ ]
⇔ δπk ,πk+1

k μk ≥ δπk ,πk+1
k+1 μk+1 ⇔ Cπk ≤ Cπk+1 . □

A.3. Proofs of Results and Supplemental Material for
Sections 5 and 6

A.3.1. Proof of Proposition 3. Using equation 69 of Takács
(1964), we obtain expressions for E[(Wπ̄k )2],E[(Wπi

i )2],
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and E[(Wπi
j )2] for i, j ∈ {k, k + 1} and i �� j, which lead to the

following when combined with (4) and Lemma A.1(c):

Mπi
i � 1

ρ̄k−1
2τ 3( )

3τ 2( ) +
λ
∑k+1

��1 p�τ
2( )
�

ρ̄k+1
+
λ

∑k−1
��1 p�τ

2( )
� + piτ

2( )
i

( )
ρ̄k−1 − ρi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
+λ

∑k−1
��1 p�τ

2( )
�

ρ̄k−1
+ τ 2( )

j μj

]
, (A.8)

Mπi
j � 1

ρ̄k−1
2ρ̄k−1 − ρi

ρ̄k−1 − ρi

( )
2τ 3( )

3τ 2( ) +
λ
∑k+1

��1 p�τ
2( )
�

ρ̄k+1

([

+
λ

∑k−1
��1 p�τ

2( )
� + piτ

2( )
i

( )
ρ̄k−1 − ρi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠+λ
∑k−1

��1 p�τ
2( )
�

ρ̄k−1
+ τ 2( )

i μi

]
. (A.9)

Wenext show that δπi
i < δ

πj

i when c(2)i > 0 for i ∈ {k, k + 1} and
j � 2k + 1 − i by showing that Mπi

i < Mπj

i . By switching the
indices of i and j in (A.9) and subtracting (A.8), we have

Mπj

i −Mπi
i � 2τ 3( )

3τ 2( ) ρ̄k−1 − ρj
( ) + λρj

∑k−1
��1 p�τ

2( )
� + piτ

2( )
i

( )
ρ̄k−1ρ̄k+1

× 1
ρ̄k−1 − ρi

+ 1
ρ̄k−1 − ρj

( )
+ λpjτ

2( )
j

ρ̄k−1 − ρj
( )

ρ̄k+1

+
λ

∑k−1
��1 p�τ

2( )
� + pjτ

2( )
j

( )
ρ̄k−1 − ρj

1
ρ̄k−1

+ 1
ρ̄k−1 − ρj

( )
,

(A.10)
which is positive because 0 < ρj < ρ̄k−1, 0 < ρi < ρ̄k−1, ρ̄k+1 > 0,
and all moments of service times are positive.

Finally, when both cost functions for type k and k + 1 are
quadratic, if δπi

i μi ≥ δπi
j μj, for some i ∈ {k, k + 1} and j � 2k +

1 − i (and, thus, δ
πj

i μi > δπi
i μi ≥ δπi

j μj > δ
πj

j μj), then I(πi) >
I(π̄k) > I(πj), and hence, πi is the best and πj is the worst
according to Corollary A.1. On the other hand, if δπk

k μk ≤
δπk
k+1μk+1 and δπk+1

k+1 μk+1 ≤ δπk+1
k μk, then I(πk) ≤ I(π̄k) and

I(πk+1) ≤ I(π̄k), and hence, π̄k is the best byCorollaryA.1. □

A.3.2. Proof of Corollary 1. Under Assumption 2, we have
δπi
i μi ≥ δπi

j μj if and only if μic
(2)
i Mπi

i ≥ μjc
(2)
j Mπi

j for i ∈ {k, k +
1} and j � 2k + 1 − i. Then, the expressions for Rπk+1 and Rπk

and the characterization of the best/worst policy follow
directly from Proposition 3. From (A.10), we have Mπk+1

k+1 <

Mπk
k+1 and Mπk+1

k > Mπk
k , and thus, Rπk+1 � M

πk+1
k+1

M
πk+1
k

<
M

πk
k+1

M
πk
k

� Rπk .

When μk � μk+1 and τ(2)k � τ(2)k+1, for i ∈ {k, k + 1} and j �
2k + 1 − i, (A.8) and (A.9) yield
Mπi

j −Mπi
i

� 1
ρ̄k−1 − ρi

2τ 3( )

3τ 2( ) +
λ
∑k+1

j�1 pjτ
2( )
j

ρ̄k+1
+
λ

∑k−1
j�1 pjτ

2( )
j + piτ

2( )
i

( )
ρ̄k−1 − ρi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

> 0.

Hence, Rπk+1 < 1 < Rπk . □

A.3.3. Proof of Proposition 4. We first show that, for

i ∈ {1, 2}, ∂

∂λ
(M

πi
i

Mπi
3−i

) < 0 if

τ 2( )
3−iμ3−i
τ 2( )
i μi

≥ 1 − 2ρi

2 1 − ρi
( ) . (A.11)

WedefineGi(λ) for i ∈ {1, 2} asGi(λ) � 2τ(3)

3τ(2)
+ λτ(2)

1 − ρ
+ λpiτ

(2)
i

1 − ρi
.

Then, (A.8) and (A.9) reduce to

Mπi
i � Gi λ( ) + τ 2( )

3−iμ3−i and Mπi
3−i

� 2 − ρi

1 − ρi

( )
Gi λ( ) + τ 2( )

i μi, for i ∈ 1, 2{ }.
Then, we have

∂

∂λ

Mπi
i

Mπi
3−i

( )
�

G′
i λ( ) τ 2( )

i μi − 2−ρi
1−ρi

( )
τ 2( )
3−iμ3−i

( )
− Gi λ( ) + τ 2( )

3−iμ3−i
( )

pi
μi 1−ρi( )2 Gi λ( )

2−ρi
1−ρi

( )
Gi λ( ) + τ 2( )

i μi

( )2 < 0

if and only if

τ 2( )
i μi − 2 − ρi

1 − ρi

( )
τ 2( )
3−iμ3−i

<

pi
μi 1−ρi( )2

2τ 3( )
3τ 2( ) + λτ 2( )

1−ρ + λpiτ
2( )
i

1−ρi

( )
2τ 3( )
3τ 2( ) + λτ 2( )

1−ρ + λpiτ
2( )
i

1−ρi + τ 2( )
3−iμ3−i

( )
τ 2( )
1−ρ( )2 +

piτ
2( )
i

1−ρi( )2
,

(A.12)
Because, for i ∈ {1, 2}, G′

i (λ) �
τ(2)

(1 − ρ)2 +
piτ

(2)
i

(1 − ρi)2 > 0. Note

that the right-hand side of (A.12) is greater than

pi
μi 1−ρi( )2

λτ 2( )
1−ρ + λpiτ

2( )
i

1−ρi

( )
λτ 2( )
1−ρ + λpiτ

2( )
i

1−ρi + τ 2( )
3−iμ3−i

( )
τ 2( )
1−ρ( )2 +

1−ρi
1−ρ

( )
piτ

2( )
i

1−ρi( )2

� τ 2( )
i μi

ρi

1 − ρi

( )2
1 + 1 − ρ

1 − ρi

( )
+ τ 2( )

3−iμ3−i
ρi

1 − ρi

( )
> τ 2( )

i μi
ρi

1 − ρi

( )2
+ τ 2( )

3−iμ3−i
ρi

1 − ρi

( )
.

Thus, a sufficient condition for (A.12) to hold is

τ 2( )
i μi − 2 − ρi

1 − ρi

( )
τ 2( )
3−iμ3−i ≤ τ 2( )

i μi
ρi

1 − ρi

( )2
+ τ 2( )

3−iμ3−i
ρi

1 − ρi

( )
,

which reduces to (A.11).
Now, note thatRπ1 � Mπ1

2 /Mπ1
1 increases in λ if and only if

Mπ1
1 /Mπ1

2 decreases in λ. Then, by letting i � 1 in (A.11),

Table A.3. Notation for Policy Parameters

Analytical result and notation for policy parameters

Proposition 2 δ
γ1 ,γ2
i ≡ E[C′

i (Uγ1 ,γ2
i )] for i ∈ {k, k + 1}, γ1, γ2 ∈ {πk , πk+1, π̄k}, and γ1 �� γ2

δ
γ
i ≡ δ

γ,π̄k
i for i ∈ {k, k + 1} and γ ∈ {πk, πk+1}

Proposition 3 Mγ
i ≡ E[(Wπ̄k )2]−E[(Wγ

i )2]
E[Wπ̄k ]−E[Wγ

i ]
for i ∈ {k, k + 1} and γ ∈ {πk , πk+1}

Corollary 1 Rγ ≡ Mγ
k+1/M

γ
k for γ ∈ {πk, πk+1}
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we obtain part (a). Similarly, by letting i � 2 in (A.11), we
obtain part (b).

Finally, to prove part (c), note that, as λ → μ, we have
Gi(λ) → ∞, and hence,

lim
λ→μ

Mπi
i

Mπi
3−i

� lim
λ→μ

Gi λ( ) + τ 2( )
3−iμ3−i

2−ρi
1−ρi

( )
Gi λ( ) + τ 2( )

i μi

� lim
λ→μ

Gi λ( )
2−ρi
1−ρi

( )
Gi λ( )

� lim
λ→μ

1 − ρi

2 − ρi
� lim

λ→μ

p3−i/μ3−i
pi/μi + 2p3−i/μ3−i

.

Then, letting i � 1 and i � 2 provides the limits for Rπ1 and
Rπ2 as λ → μ. □

A.3.4. Proof of Proposition 5. Because the first three mo-
ments of service times do not depend on type, we drop the
subscript from μi, τ

(2)
i , and τ(3)i . Then, we have

Rπ1 �
2−ρ1
1−ρ1

( )
M + τ 2( )μ

1−ρ1( )2
M + τ 2( )μ

1−ρ1( )
, Rπ2 �

M + τ 2( )μ
1−ρ2( )

2−ρ2
1−ρ2

( )
M + τ 2( )μ

1−ρ2( )2
,

where M ≡ 2τ(3)

3τ(2)
+ λτ(2)

1 − ρ
, which is a positive constant inde-

pendent of pi for i ∈ {1, 2}. Then, we have

∂Rπ1

∂p1
�

M2

μ + ρ1τ 2( )

1−ρ1( )M
1−ρ1( )2
λ M + τ 2( )μ

1−ρ1( )
[ ]2 > 0 and

∂Rπ2

∂p2
�

−M2

μ − ρ2τ 2( )

1−ρ2( )M
1−ρ2( )2
λ

2−ρ2
1−ρ2

( )
M + τ 2( )μ

1−ρ2( )2
[ ]2 < 0. □

A.3.5. Proof of Proposition 6. When service times are
exponential, τ(3)i � 6/μ3

i and τ(2)i � 2/μ2
i , and when service

timesaredeterministic,τ(3)i � 1/μ3
i and τ(2)i � 1/μ2

i for i ∈ {1, 2},
and hence, we have

Rπ1
exp �

2−ρ1
1−ρ1

( )
N 1( )

exp + 1
μ1

N 1( )
exp + 1

μ2

, Rπ2
exp �

N 2( )
exp + 1

μ1

2−ρ2
1−ρ2

( )
N 2( )

exp + 1
μ2

;

Rπ1
det �

2−ρ1
1−ρ1

( )
N 1( )

det + 1
μ1

N 1( )
det + 1

μ2

, Rπ2
det �

N 2( )
det + 1

μ1

2−ρ2
1−ρ2

( )
N 2( )

det + 1
μ2

.

Here, for i ∈ {1, 2},

N i( )
exp ≡

p1/μ3
1 + p2/μ3

2

p1/μ2
1 + p2/μ2

2
+ λ p1/μ2

1 + p2/μ2
2

( )
1 − ρ

+ λpi/μ2
i

1 − ρi
,

N i( )
det ≡

2 p1/μ3
1 + p2/μ3

2

( )
3 p1/μ2

1 + p2/μ2
2

( ) + λ p1/μ2
1 + p2/μ2

2

( )
1 − ρ

+ λpi/μ2
i

1 − ρi
,

where N(i)
exp > N(i)

det. Taking the difference of Rπ1
exp and Rπ1

det,
we have

Rπ1
exp − Rπ1

det �
1
μ2

2−ρ1
1−ρ1

( )
− 1

μ1

( )
N 1( )

exp −N 1( )
det

( )
N 1( )

det + 1
μ2

( )
N 1( )

exp + 1
μ2

( ) .

Hence, Rπ1
exp ≥ Rπ1

det if and only if μ2/μ1 ≤ (2 − ρ1)/(1 − ρ1),
which proves part (a). Part (b) can be proved similarly by
obtaining Rπ2

exp − Rπ2
det. □

A.3.6. Proof of Proposition 7. We first provide Lemma A.3
to facilitate the proof of Proposition 7.

Figure A.3. (Color online) The 95% C.I. of the Relative Cost Difference Between the G-cμ Rule and π∗ for the Case with K � 3,
Where Negative Values Indicate That G-cμ Rule Has a Smaller Cost Than π∗ and the Rightmost Graph Shows the Proportions
of Each Type (p1, p2, p3) for Different Scenarios in the Simulation Study
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Lemma A.3. Suppose that λ, μi, τ
(2)
i , and τ(3)i are finite and μi �

μ > λ for all i � 1, 2, . . . ,K. Then,
a. π∗k � πi if and only if fi(τ(2)i , τ(2)j ) > 0 for i ∈ {k, k + 1} and

j � 2k + 1 − i, where, for x1, x2 > 0,

fi x1, x2( ) ≡ ρ̄k−1ρ̄k+1 − ρk + ρk+1
( )

ρ̄k−1 − ρi
( )( )

x2

− ρi ρk + ρk+1
( ) + ρ̄2k−1ρ̄k+1

ρ̄k−1 − ρi

( )
x1, (A.13)

− ρ̄k−1ρ̄k+1
2τ 3( )

3 μ
∑K

��1,�/∈ k,k+1{ } p�τ
2( )
�

(
+ pix1 + pjx2

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− ρ̄k−1ρ

∑k−1
��1

p�τ
2( )
� 1 + ρ̄k+1

ρ̄k−1 − ρi

( )
.

(A.14)
b. For i ∈ {k, k + 1}, fi(x1, x2) < 0 for any x1, x2 > 0 if

ρ ≥ 1∑k+1
��1 p� +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
pk + pk+1
( )

p2k+1−i
√ , (A.15)

which is feasible for ρ < 1 when pk + pk+1 >
∑K

��k+2 p� and
p2k+1−i > (∑K

��k+2 p�)2/(pk + pk+1).
c. For i ∈ {k, k + 1}, if (A.15) holds in the opposite direction,

then, for any fixed x1 > 0, there exists hi(x1) ∈ (x1,∞) such that
fi(x1, hi(x1)) � 0, and fi(x1, x2) > 0 if and only if x2 > hi(x1).
Furthermore, if pi ≤ p2k+1−i, then hi(x1) strictly increases in x1.

Proof of Lemma A.3. (a) By Corollary 1, π∗k � πi if and only
if Mπi

i > Mπi
j for i ∈ {k, k + 1} and j � 2k + 1 − i. Taking the

difference of (A.8) and (A.9) and using the fact that μi � μ for
all i � 1, 2, . . . ,K, we have

Mπi
i −Mπi

j �
μ τ 2( )

j − τ 2( )
i

( )
ρ̄k−1

− 1
ρ̄k−1 − ρi

× 2τ 3( )

3τ 2( ) +
λ
∑k+1

��1 p�τ
2( )
�

ρ̄k+1
+
λ

∑k−1
��1 p�τ

2( )
� + piτ

2( )
i

( )
ρ̄k−1 − ρi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ > 0

if and only if fi(τ(2)i , τ(2)j ) > 0 for i ∈ {k, k + 1} and j � 2k + 1 − i.

(b) By (A.13), fi(x1, x2) < 0 for any x1, x2 > 0 if ρ̄k−1ρ̄k+1 −
(ρk + ρk+1)(ρ̄k−1 − ρi) ≤ 0, which reduces to (A.14). For i ∈
{k, k + 1}, (A.14) could hold for ρ < 1 only if its right-hand
side is less than one, that is,

∑k+1
��1

p� +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
pk + pk+1
( )

p2k+1−i
√

> 1 ⇔ p2k+1−i
pk + pk+1

>

∑K
��k+2 p�

pk + pk+1

( )2
,

which holds only if we have pk + pk+1 >
∑K

j�k+2 pj.
(c) If (A.14) holds in the opposite direction for i ∈

{k, k + 1}, it is directly observed from (A.13) that, for fixed x1,
fi(x1, x2) increases in x2. Also, for any fixed x1 > 0, from
(A.13), we obtain fi(x1, x2) → ∞ as x2 → ∞ and

fi x1, x1( ) < ρ̄k−1ρ̄k+1 − ρ̄2
k−1ρ̄k+1

ρ̄k−1 − ρi

( )
x1 � − ρ̄k−1ρ̄k+1ρi

ρ̄k−1 − ρi

( )
x1 < 0.

Hence, for anyfixedx1 > 0, there exists unique hi(x1) ∈ (x1,∞)
such that fi(x1, hi(x1)) � 0; for any x2 > hi(x1), fi(x1, x2) > 0;
and for any x2 ≤ hi(x1), fi(x1, x2) ≤ 0.

Next, we show that hi(x1) increases in x1 if pi ≤ pj for i, j ∈
{k, k + 1} and i �� j. First, define

αi ≡ ρ̄k−1ρ̄k+1 − ρk + ρk+1
( )

ρ̄k−1 − ρi
( )( )

,

β ≡ 2ρ̄k−1ρ̄k+1τ 3( )

3 μ
, Θi ≡

∑K
��1,�/∈ k,k+1{ }

p�τ
2( )
� + pix1,

Di ≡ ρi ρk + ρk+1
( ) + ρ̄2

k−1ρ̄k+1
ρ̄k−1 − ρi

( )
x1

+ ρ̄k−1ρ
∑k−1
��1

p�τ
2( )
� 1 + ρ̄k+1

ρ̄k−1 − ρi

( )
.

Then, (A.13) reduces to fi(x1, x2) � αix2 − β(Θi + pjx2)−1 −Di.
Note that when (A.14) holds in the opposite direction, we
have αi > 0. Also, note that setting fi(x1, x2) � 0 is equivalent
to lettingαipjx22 + (αiΘi −Dipj)x2 − (DiΘi + β) � 0. Then, hi(x1)
is the unique positive root of this quadratic function, that is,

hi x1( ) � −αiΘi +Dipj + ̅̅̅
Δi

√
2αipj

,

where Δi ≡ (Dipj − αiΘi)2 + 4αipj(DiΘi + β) � (Dipj + αiΘi)2 +
4αipjβ > 0. Note that αi and β are independent of x1,
dΘi/dx1 � pi > 0, and

dDi

dx1
� ρi ρk + ρk+1

( ) + ρ̄2
k−1ρ̄k+1

ρ̄k−1 − ρi
>

ρ̄2
k−1ρ̄k+1

ρ̄k−1 − ρi
> ρ̄k−1ρ̄k+1 > αi,

dΔi

dx1
� 2 Dipj + αiΘi

( ) dDi

dx1
pj + αipi

( )
> 0.

Then,

dhi x1( )
dx1

� 1
2αipj

pj
dDi

dx1

( )
− αi

dΘi

dx1

( )
+ 1
2

̅̅̅
Δi

√ dΔi

dx1

( )( )
>

1
2αipj

pj
dDi

dx1

( )
− αipi

( )
> 0,

where the last inequality follows because dDi/dx1 > αi and
0 < pi ≤ pj. □

Proof of Proposition 7. (a) If ρ ≥ (∑k+1
��1 p� +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(pk + pk+1)pk
√ )−1,

then (A.14) holds for both i � k and i � k + 1 under the as-
sumption pk ≤ pk+1. Then, fk(τ(2)k ,τ(2)k+1)< 0 and fk+1(τ(2)k+1,τ

(2)
k )< 0

from Lemma A.3(b), and π∗k /∈ {πk, πk+1} from Lemma A.3(a).
Thus, π∗k � π̄k.

For ρ ≥ (∑k+1
��1 p� +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(pk + pk+1)pk
√ )−1 to holdwhen ρ < 1, we

need pk + pk+1 >
∑K

��k+2 p� and pk/(pk + pk+1) > (∑K
��k+2 p�/( pk + pk+1))2 by Lemma A.3(b), and the latter inequality is

equivalent to

pk + pk+1
pk

<
pk + pk+1∑K

��k+2 p�

( )2
⇔ pk+1

pk
<

pk + pk+1∑K
��k+2 p�

( )2
−1.

This inequality holds for pk ≤ pk+1 only if pk + pk+1 ≥̅̅
2

√ ∑K
��k+2 p�.
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(b) If (∑k+1
��1 p� + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(pk + pk+1)pk+1

√ )−1 ≤ ρ < (∑k+1
��1 p� +̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(pk + pk+1)pk

√ )−1, (A.14) holds for i � k (implying π∗k �� πk

by parts (a) and (b) of Lemma A.3) and holds in the op-
posite direction for i � k + 1. Now, let ξk ≡ hk+1(τ(2)k+1), where
hk+1(·) is defined in Lemma A.3(c) and ξk > τ(2)k+1. Then,
fk+1(τ(2)k+1, τ

(2)
k ) > 0, andhence,π∗k � πk+1 if τ(2)k > ξk; otherwise,

fk+1(τ(2)k+1, τ
(2)
k ) ≤ 0, and hence, π∗k � π̄k by Lemma A.3(a).

(c) If ρ < (∑k+1
��1 p� +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(pk + pk+1)pk+1
√ )−1, then (A.14) holds

in the opposite direction for both i � k and i � k + 1. Then, by
Lemma A.3(c), for i, j ∈ {k, k + 1} and i �� j, there exists ξj �
hi(τ(2)i ) > τ(2)i such that π∗k � πi if and only if τ(2)j > ξj. Then,

π∗k �
πk, if τ 2( )

k+1 > ξk+1;
πk+1, if τ 2( )

k > ξk;
π̄k, otherwise.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Furthermore, when pk ≤ pk+1, hk(τ(2)k ) strictly increases in τ(2)k
from Lemma A.3(c). Hence, we can let ξ̃k ≡ h−1k (τ(2)k+1), where
h−1k (·) is the inverse function of hk(·) and h−1k (·) is also a strictly

increasing function. Then, τ(2)k+1 > ξk+1 � hk(τ(2)k ) is equivalent
to h−1k (τ(2)k+1) � ξ̃k > τ(2)k . Hence,

π∗k �
πk, if τ 2( )

k < ξ̃k;

π̄k, if ξ̃k ≤ τ 2( )
k ≤ ξk;

πk+1, if τ 2( )
k > ξk.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Finally, because hk(τ(2)k+1) > τ(2)k+1, we have τ(2)k+1 > h−1k (τ(2)k+1) � ξ̃k.
□

A.3.7. Proof of Corollary 2 We here only prove part (a);
proofs of parts (b) and (c) are similar. If C′

k+1(t)μk+1 ≥
max{δπk

k , δπk+1
k }μk for all t ≥ 0, then, for any nonnegative ran-

dom variable X, we have E[C′
k+1(X)]μk+1 ≥ max{δπk

k , δπk+1
k }μk

when the expectation exists. Furthermore, by Remark A.1,
we have δ

γ
i � E[C′

i (Uγ
i )]. Hence,

δπk+1
k+1 μk+1 � E C′

k+1 Uπk+1
k+1

( )[ ]
μk+1 ≥ max δπk

k , δπk+1
k

{ }
μk ≥ δπk+1

k μk,

which implies Cπk+1 ≤ Cπ̄k by Proposition 2(b). Similarly,
Proposition 2(a) yields Cπ̄k ≤ Cπk . □

A.4. Supplemental Material for Section 7
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